Research on root morphological traits of dry-raised seedlings (D-RS) at different growth stages of rice have so far attracted less attention. In this study, using mid-season indica hy-
Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological cha...Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.展开更多
Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In t...Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In this paper, we present a novel method to detect text from scene images. Firstly, we decompose scene images into background and text components using morphological component analysis(MCA), which will reduce the adverse effects of complex backgrounds on the detection results.In order to improve the performance of image decomposition,two discriminative dictionaries of background and text are learned from the training samples. Moreover, Laplacian sparse regularization is introduced into our proposed dictionary learning method which improves discrimination of dictionary. Based on the text dictionary and the sparse-representation coefficients of text, we can construct the text component. After that, the text in the query image can be detected by applying certain heuristic rules. The results of experiments show the effectiveness of the proposed method.展开更多
To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied...To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied in this paper.The ground clutter is suppressed firstly to reduce the morphological compositions of radar echo.After that,the MCA algorithm is applied and the window used in the short-time Fourier transform(STFT)is optimized to lessen the spectrum leakage of WTC.Finally,the group sparsity structure of WTC in the STFT domain can be utilized to decrease the degrees of freedom in the solution,thus contributing to better estimation performance of weather signals.The effectiveness and feasibility of the proposed method are demonstrated by numerical simulations.展开更多
Images are generally corrupted by impulse noise during acquisition and transmission.Noise deteriorates the quality of images.To remove corruption noise,we propose a hybrid approach to restoring a random noisecorrupted...Images are generally corrupted by impulse noise during acquisition and transmission.Noise deteriorates the quality of images.To remove corruption noise,we propose a hybrid approach to restoring a random noisecorrupted image,including a block matching 3D(BM3D)method,an adaptive non-local mean(ANLM)scheme,and the K-singular value decomposition(K-SVD)algorithm.In the proposed method,we employ the morphological component analysis(MCA)to decompose an image into the texture,structure,and edge parts.Then,the BM3D method,ANLM scheme,and K-SVD algorithm are utilized to eliminate noise in the texture,structure,and edge parts of the image,respectively.Experimental results show that the proposed approach can effectively remove interference random noise in different parts;meanwhile,the deteriorated image is able to be reconstructed well.展开更多
Morphological component analysis( MCA) is a signal separation method based on signal morphological diversity and sparse representation. MCA can extract the signal components of different morphologies by different dict...Morphological component analysis( MCA) is a signal separation method based on signal morphological diversity and sparse representation. MCA can extract the signal components of different morphologies by different dictionary combinations. Firstly,the theory of MCA was analyzed with sparse representation principle and relaxation criterion. Then detailed steps of block coordinate relaxation( BCR) were given. Finally,algorithm performance was verified by simulation signals analysis, MCA was applied to decomposing and denoising gearbox signals, and the fault parameters were extracted by energy operator demodulation envelop of morphological component.展开更多
Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicate...Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicated characteristics and attenuating the noise.Recent years,a novel method so-called morphological component analysis(MCA)is put forward to separate different geometrical components by amalgamating several irrelevance transforms.According to study the local singular and smooth linear components characteristics of seismic data,we propose a method of suppressing noise by integrating with the advantages of adaptive K-singular value decomposition(K-SVD)and wave atom dictionaries to depict the morphological features diversity of seismic signals.Numerical results indicate that our method can dramatically suppress the undesired noises,preserve the information of geologic body and geological structure and improve the signal-to-noise ratio of the data.We also demonstrate the superior performance of this approach by comparing with other novel dictionaries such as discrete cosine transform(DCT),undecimated discrete wavelet transform(UDWT),or curvelet transform,etc.This algorithm provides new ideas for data processing to advance quality and signal-to-noise ratio of seismic data.展开更多
In recent years,there has been a significant increase in the number of people suffering from eye illnesses,which should be treated as soon as possible in order to avoid blindness.Retinal Fundus images are employed for...In recent years,there has been a significant increase in the number of people suffering from eye illnesses,which should be treated as soon as possible in order to avoid blindness.Retinal Fundus images are employed for this purpose,as well as for analysing eye abnormalities and diagnosing eye illnesses.Exudates can be recognised as bright lesions in fundus pictures,which can be thefirst indicator of diabetic retinopathy.With that in mind,the purpose of this work is to create an Integrated Model for Exudate and Diabetic Retinopathy Diagnosis(IM-EDRD)with multi-level classifications.The model uses Support Vector Machine(SVM)-based classification to separate normal and abnormal fundus images at thefirst level.The input pictures for SVM are pre-processed with Green Channel Extraction and the retrieved features are based on Gray Level Co-occurrence Matrix(GLCM).Furthermore,the presence of Exudate and Diabetic Retinopathy(DR)in fundus images is detected using the Adaptive Neuro Fuzzy Inference System(ANFIS)classifier at the second level of classification.Exudate detection,blood vessel extraction,and Optic Disc(OD)detection are all processed to achieve suitable results.Furthermore,the second level processing comprises Morphological Component Analysis(MCA)based image enhancement and object segmentation processes,as well as feature extraction for training the ANFIS classifier,to reliably diagnose DR.Furthermore,thefindings reveal that the proposed model surpasses existing models in terms of accuracy,time efficiency,and precision rate with the lowest possible error rate.展开更多
In this paper, we proposed a registration method by combining the morphological component analysis(MCA) and scale-invariant feature transform(SIFT) algorithm. This method uses the perception dictionaries,and combines ...In this paper, we proposed a registration method by combining the morphological component analysis(MCA) and scale-invariant feature transform(SIFT) algorithm. This method uses the perception dictionaries,and combines the Basis-Pursuit algorithm and the Total-Variation regularization scheme to extract the cartoon part containing basic geometrical information from the original image, and is stable and unsusceptible to noise interference. Then a smaller number of the distinctive key points will be obtained by using the SIFT algorithm based on the cartoon part of the original image. Matching the key points by the constrained Euclidean distance,we will obtain a more correct and robust matching result. The experimental results show that the geometrical transform parameters inferred by the matched key points based on MCA+SIFT registration method are more exact than the ones based on the direct SIFT algorithm.展开更多
To effectively suppress white noise and preserve more useful components of electrocardiogram(ECG) signal, a novel de-noising method based on morphological component analysis(MCA) is proposed. MCA is a method which all...To effectively suppress white noise and preserve more useful components of electrocardiogram(ECG) signal, a novel de-noising method based on morphological component analysis(MCA) is proposed. MCA is a method which allows us to separate features contained in an original signal when these features present different morphological aspects. According to the features of ECG, we used the UWT dictionary to sparsely represent mutated component, and used the DCT dictionary to sparsely represent smooth component. The experimental results of the samples choosing from MIT-BIH databases show that the MCA-based method is effective for white noise removal.展开更多
文摘Research on root morphological traits of dry-raised seedlings (D-RS) at different growth stages of rice have so far attracted less attention. In this study, using mid-season indica hy-
基金supported by the National Scientific Equipment Development Project,"Deep Resource Exploration Core Equipment Research and Development"(Grant No.ZDYZ2012-1)06 Subproject,"Metal Mine Earthquake Detection System"and 05 Subject,"System Integration Field Test and Processing Software Development"
文摘Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.
基金supported in part by the National Natural Science Foundation of China(61302041,61363044,61562053,61540042)the Applied Basic Research Foundation of Yunnan Provincial Science and Technology Department(2013FD011,2016FD039)
文摘Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In this paper, we present a novel method to detect text from scene images. Firstly, we decompose scene images into background and text components using morphological component analysis(MCA), which will reduce the adverse effects of complex backgrounds on the detection results.In order to improve the performance of image decomposition,two discriminative dictionaries of background and text are learned from the training samples. Moreover, Laplacian sparse regularization is introduced into our proposed dictionary learning method which improves discrimination of dictionary. Based on the text dictionary and the sparse-representation coefficients of text, we can construct the text component. After that, the text in the query image can be detected by applying certain heuristic rules. The results of experiments show the effectiveness of the proposed method.
文摘To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied in this paper.The ground clutter is suppressed firstly to reduce the morphological compositions of radar echo.After that,the MCA algorithm is applied and the window used in the short-time Fourier transform(STFT)is optimized to lessen the spectrum leakage of WTC.Finally,the group sparsity structure of WTC in the STFT domain can be utilized to decrease the degrees of freedom in the solution,thus contributing to better estimation performance of weather signals.The effectiveness and feasibility of the proposed method are demonstrated by numerical simulations.
基金supported by MOST under Grant No.104-2221-E-468-007
文摘Images are generally corrupted by impulse noise during acquisition and transmission.Noise deteriorates the quality of images.To remove corruption noise,we propose a hybrid approach to restoring a random noisecorrupted image,including a block matching 3D(BM3D)method,an adaptive non-local mean(ANLM)scheme,and the K-singular value decomposition(K-SVD)algorithm.In the proposed method,we employ the morphological component analysis(MCA)to decompose an image into the texture,structure,and edge parts.Then,the BM3D method,ANLM scheme,and K-SVD algorithm are utilized to eliminate noise in the texture,structure,and edge parts of the image,respectively.Experimental results show that the proposed approach can effectively remove interference random noise in different parts;meanwhile,the deteriorated image is able to be reconstructed well.
基金National Natural Science Foundation of China(No.51575523)
文摘Morphological component analysis( MCA) is a signal separation method based on signal morphological diversity and sparse representation. MCA can extract the signal components of different morphologies by different dictionary combinations. Firstly,the theory of MCA was analyzed with sparse representation principle and relaxation criterion. Then detailed steps of block coordinate relaxation( BCR) were given. Finally,algorithm performance was verified by simulation signals analysis, MCA was applied to decomposing and denoising gearbox signals, and the fault parameters were extracted by energy operator demodulation envelop of morphological component.
基金sponsored by National Natural Science Foundation of China(No.41672325,41602334)National Key Research and Development Program of China(No.2017YFC0601505).
文摘Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicated characteristics and attenuating the noise.Recent years,a novel method so-called morphological component analysis(MCA)is put forward to separate different geometrical components by amalgamating several irrelevance transforms.According to study the local singular and smooth linear components characteristics of seismic data,we propose a method of suppressing noise by integrating with the advantages of adaptive K-singular value decomposition(K-SVD)and wave atom dictionaries to depict the morphological features diversity of seismic signals.Numerical results indicate that our method can dramatically suppress the undesired noises,preserve the information of geologic body and geological structure and improve the signal-to-noise ratio of the data.We also demonstrate the superior performance of this approach by comparing with other novel dictionaries such as discrete cosine transform(DCT),undecimated discrete wavelet transform(UDWT),or curvelet transform,etc.This algorithm provides new ideas for data processing to advance quality and signal-to-noise ratio of seismic data.
文摘In recent years,there has been a significant increase in the number of people suffering from eye illnesses,which should be treated as soon as possible in order to avoid blindness.Retinal Fundus images are employed for this purpose,as well as for analysing eye abnormalities and diagnosing eye illnesses.Exudates can be recognised as bright lesions in fundus pictures,which can be thefirst indicator of diabetic retinopathy.With that in mind,the purpose of this work is to create an Integrated Model for Exudate and Diabetic Retinopathy Diagnosis(IM-EDRD)with multi-level classifications.The model uses Support Vector Machine(SVM)-based classification to separate normal and abnormal fundus images at thefirst level.The input pictures for SVM are pre-processed with Green Channel Extraction and the retrieved features are based on Gray Level Co-occurrence Matrix(GLCM).Furthermore,the presence of Exudate and Diabetic Retinopathy(DR)in fundus images is detected using the Adaptive Neuro Fuzzy Inference System(ANFIS)classifier at the second level of classification.Exudate detection,blood vessel extraction,and Optic Disc(OD)detection are all processed to achieve suitable results.Furthermore,the second level processing comprises Morphological Component Analysis(MCA)based image enhancement and object segmentation processes,as well as feature extraction for training the ANFIS classifier,to reliably diagnose DR.Furthermore,thefindings reveal that the proposed model surpasses existing models in terms of accuracy,time efficiency,and precision rate with the lowest possible error rate.
基金the National Science Foundation of China(No.61471185)the Natural Science Foundation of Shandong Province(No.ZR2016FM21)+1 种基金Shandong Province Science and Technology Plan Project(No.2015GSF116001)Yantai City Key Research and Development Plan Project(Nos.2014ZH157 and2016ZH057)
文摘In this paper, we proposed a registration method by combining the morphological component analysis(MCA) and scale-invariant feature transform(SIFT) algorithm. This method uses the perception dictionaries,and combines the Basis-Pursuit algorithm and the Total-Variation regularization scheme to extract the cartoon part containing basic geometrical information from the original image, and is stable and unsusceptible to noise interference. Then a smaller number of the distinctive key points will be obtained by using the SIFT algorithm based on the cartoon part of the original image. Matching the key points by the constrained Euclidean distance,we will obtain a more correct and robust matching result. The experimental results show that the geometrical transform parameters inferred by the matched key points based on MCA+SIFT registration method are more exact than the ones based on the direct SIFT algorithm.
基金Natural Science Foundatoin of Fujian Province of Chinagrant number:2012J01280
文摘To effectively suppress white noise and preserve more useful components of electrocardiogram(ECG) signal, a novel de-noising method based on morphological component analysis(MCA) is proposed. MCA is a method which allows us to separate features contained in an original signal when these features present different morphological aspects. According to the features of ECG, we used the UWT dictionary to sparsely represent mutated component, and used the DCT dictionary to sparsely represent smooth component. The experimental results of the samples choosing from MIT-BIH databases show that the MCA-based method is effective for white noise removal.