期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Morphological Undecimated Wavelet Decomposition Fusion Algorithm and Its Application on Fault Feature Extraction of Hydraulic Pump 被引量:3
1
作者 孙健 李洪儒 +1 位作者 王卫国 叶鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第3期268-278,共11页
Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Fir... Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Firstly,under the framework of morphological undecimated wavelet decomposition(MUWD),multi-channel signals are decomposed.Approximate signals of all decomposition layers are selected by feature energy factor and fused according to the presented fusion rules.Furthermore,specific method for optimal selection of MUWDF parameters is presented to avoid subjective influences.Finally,the proposed algorithm is verified by simulation signals and pump vibration signals. 展开更多
关键词 morphological undecimated wavelet decomposition(mu
下载PDF
基于形态非抽样融合与DCT高阶奇异熵的液压泵退化特征提取 被引量:7
2
作者 孙健 李洪儒 +1 位作者 王卫国 许葆华 《振动与冲击》 EI CSCD 北大核心 2015年第22期54-61,81,共9页
针对轴向柱塞式液压泵性能退化中振动信号非线性强、退化特征提取困难等问题,提出基于形态非抽样融合与DCT(Discrete Cosine Transform)高阶奇异熵的退化特征提取方法。在一般框架下提出形态非抽样小波融合方法,通过构建特征能量因子筛... 针对轴向柱塞式液压泵性能退化中振动信号非线性强、退化特征提取困难等问题,提出基于形态非抽样融合与DCT(Discrete Cosine Transform)高阶奇异熵的退化特征提取方法。在一般框架下提出形态非抽样小波融合方法,通过构建特征能量因子筛选各分解层近似信号,据融合规则实现双通道振动信号融合重构、改善重构信号的特征信息;并利用DCT高阶谱分析法对融合信号进一步处理,通过奇异值分解分别计算Shannon、Tsallis奇异熵作为液压泵性能退化特征向量;用仿真信号及液压泵实测振动信号验证该方法的有效性。 展开更多
关键词 退化特征提取 形态非抽样小波融合 DCT 高阶奇异熵
下载PDF
基于形态非抽样小波分解的滚动轴承故障特征提取 被引量:9
3
作者 黄兵锋 沈路 +1 位作者 周晓军 刘莉 《农业机械学报》 EI CAS CSCD 北大核心 2010年第2期203-207,共5页
针对滚动轴承故障特征信息往往被强背景噪声淹没的问题,提出采用基于多尺度差值形态滤波的形态非抽样小波分解方法提取故障特征。形态非抽样小波分解具有形态学的形态滤波特性与小波分解的多分辨率特性,通过非抽样方式对信号进行分解,... 针对滚动轴承故障特征信息往往被强背景噪声淹没的问题,提出采用基于多尺度差值形态滤波的形态非抽样小波分解方法提取故障特征。形态非抽样小波分解具有形态学的形态滤波特性与小波分解的多分辨率特性,通过非抽样方式对信号进行分解,克服了传统形态小波分解信息丢失的问题。结合差值形态滤波能够提取信号冲击成分的特点,构造了一种基于多尺度差值形态滤波的形态非抽样小波分解方法,并将其应用于滚动轴承故障特征的提取。仿真与实例证明,该方法可有效提取信号中的故障特征,比传统小波包分解效果更好。形态非抽样小波分解算法只包含加减和极大、极小运算,具有计算简单、快速等优点,适用于滚动轴承的在线监测与故障诊断。 展开更多
关键词 滚动轴承 故障诊断 特征提取 形态非抽样小波分解
下载PDF
形态非抽样小波与灰色关联度的轴承故障诊断 被引量:2
4
作者 沈路 周晓军 张杰 《电子机械工程》 2012年第5期60-64,共5页
文中针对滚动轴承振动信号的强噪声背景以及故障样本不易大量获取的问题,提出了一种基于形态非抽样小波与灰色关联度的滚动轴承故障诊断方法。形态非抽样小波克服了传统形态小波由于采用抽样方式分解而造成的信息丢失问题,具有良好的特... 文中针对滚动轴承振动信号的强噪声背景以及故障样本不易大量获取的问题,提出了一种基于形态非抽样小波与灰色关联度的滚动轴承故障诊断方法。形态非抽样小波克服了传统形态小波由于采用抽样方式分解而造成的信息丢失问题,具有良好的特征提取和抗噪性能。灰色关联度分析方法对小样本模式识别问题具有良好的分类效果,适用于滚动轴承的故障模式识别。文中首先利用差值形态滤波能够提取信号冲击成分的特点,提出一种多尺度形态非抽样小波方法提取滚动轴承故障特征,然后将形态非抽样小波分解后近似信号的归一化特征能量作为特征向量,最后通过比较待识别样本与标准故障模式的灰色关联度来对故障模式进行分类。实例表明该方法可取得良好的效果。 展开更多
关键词 形态非抽样小波分解 灰色关联度 差值形态滤波 滚动轴承 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部