With the rapid and wide deployment of renewable energy,the operations of the power system are facing greater challenges when dispatching flexible resources to keep power balance.The output power of renewable energy is...With the rapid and wide deployment of renewable energy,the operations of the power system are facing greater challenges when dispatching flexible resources to keep power balance.The output power of renewable energy is uncertain,and thus flexible regulation for the power balance is highly demanded.Considering the multi-timescale output characteristics of renewable energy,a flexibility evaluation method based on multi-scale morphological decomposition and a multi-timescale energy storage deployment model based on bi-level decision-making are proposed in this paper.Through the multi-timescale decomposition algorithm on the basis of mathematical morphology,the multi-timescale components are separated to determine the flexibility requirements on different timescales.Based on the obtained flexibility requirements,a multi-timescale energy resources deployment model based on bi-level optimization is established considering the economic performance and the flexibility of system operation.This optimization model can allocate corresponding flexibility resources according to the economy,flexibility and reliability requirements of the power system,and achieve the trade-off between them.Finally,case studies demonstrate the effectiveness of our model and method.展开更多
Suitable electron transport layers are essential for high performance planar perovskite heterojunction solar cells. Here, we use ZnO electron transport layer sputtered under oxygen-rich atmosphere at room temperature ...Suitable electron transport layers are essential for high performance planar perovskite heterojunction solar cells. Here, we use ZnO electron transport layer sputtered under oxygen-rich atmosphere at room temperature to decrease the hydroxide and then suppress decomposition of perovskite films. The perovskite films with improved crystallinity and morphology are achieved. Besides, on the ZnO substrate fabricated at oxygen-rich atmosphere, open-circuit voltage of the CH_3NH_3PbI_3-based perovskite solar cells increased by 0.13 V.A high open-circuit voltage of 1.16 V provides a good prospect for the perovskite-based tandem solar cells. The ZnO sputtered at room temperature can be easily fabricated industrially on a large scale, therefore, compatible to flexible and tandem devices. Those properties make the sputtered ZnO films promising as electron transport materials for perovskite solar cells.展开更多
基金supported by the NationalNatural Science Foundation of China(Grant No.52107129).
文摘With the rapid and wide deployment of renewable energy,the operations of the power system are facing greater challenges when dispatching flexible resources to keep power balance.The output power of renewable energy is uncertain,and thus flexible regulation for the power balance is highly demanded.Considering the multi-timescale output characteristics of renewable energy,a flexibility evaluation method based on multi-scale morphological decomposition and a multi-timescale energy storage deployment model based on bi-level decision-making are proposed in this paper.Through the multi-timescale decomposition algorithm on the basis of mathematical morphology,the multi-timescale components are separated to determine the flexibility requirements on different timescales.Based on the obtained flexibility requirements,a multi-timescale energy resources deployment model based on bi-level optimization is established considering the economic performance and the flexibility of system operation.This optimization model can allocate corresponding flexibility resources according to the economy,flexibility and reliability requirements of the power system,and achieve the trade-off between them.Finally,case studies demonstrate the effectiveness of our model and method.
基金supported by the International Cooperation Projects of the Ministry of Science and Technology (2014DFE60170)the National Natural Science Foundation of China (61474065 and 61674084)+2 种基金Tianjin Research Key Program of Application Foundation and Advanced Technology (15JCZDJC31300)the Key Project in the Science & Technology Pillar Program of Jiangsu Province (BE2014147-3)the 111 Project (B16027)
文摘Suitable electron transport layers are essential for high performance planar perovskite heterojunction solar cells. Here, we use ZnO electron transport layer sputtered under oxygen-rich atmosphere at room temperature to decrease the hydroxide and then suppress decomposition of perovskite films. The perovskite films with improved crystallinity and morphology are achieved. Besides, on the ZnO substrate fabricated at oxygen-rich atmosphere, open-circuit voltage of the CH_3NH_3PbI_3-based perovskite solar cells increased by 0.13 V.A high open-circuit voltage of 1.16 V provides a good prospect for the perovskite-based tandem solar cells. The ZnO sputtered at room temperature can be easily fabricated industrially on a large scale, therefore, compatible to flexible and tandem devices. Those properties make the sputtered ZnO films promising as electron transport materials for perovskite solar cells.