Potassium Sodium Bismuth Titanate (KNBT) ceramics, with the general formula (1 - x)K0.5Bi0.5TiO3 -xNa0.5Bi0.5TiO3, have been synthesized following hydrothermal route, starting with solid solutions of pure perovskite n...Potassium Sodium Bismuth Titanate (KNBT) ceramics, with the general formula (1 - x)K0.5Bi0.5TiO3 -xNa0.5Bi0.5TiO3, have been synthesized following hydrothermal route, starting with solid solutions of pure perovskite nanoceramics of KBT and NBT in desired stoichiometric weight ratios, followed by sintering between 850°C and 1000°C for few hours. Pure KNBT nanoceramics with perovskite structure, having mean particle size around 30 nm, could be obtained. Morphology of the samples is found to depend strongly on composition. A change of composition results in a phase change, as evident from X-ray structure analysis. This phase change is a result of rhombohedral to tetragonal morphotropic phase boundary (MPB) in the sample with x around 0.80. Composition dependent occurrence of MPB leads to formation of needle like structures with micrometer length scales. These are typical of tetragonal lamellar structures, suggesting partial induction of tetragonal polar order from rhombohedral structure at MPB. Dielectric and piezoelectric properties, such as dielectric constant and loss, piezoelectric coefficients and figures of merit, exhibit threshold maxima in their values at the composition corresponding to MPB. These values reported for a lead-free piezoceramic, synthesized by a comparatively simple hydrothermal route, are highly promising, and comparable to well-known PZT.展开更多
MgO-modified Li0.06(Na0.5K0.5)0.94NbO3O3 (L6NKN) lead-free piezoelectric ceramics were synthesized by normal sintering at a rela- tively low temperature of 1000℃. The crystalline phase, microstructure, and electr...MgO-modified Li0.06(Na0.5K0.5)0.94NbO3O3 (L6NKN) lead-free piezoelectric ceramics were synthesized by normal sintering at a rela- tively low temperature of 1000℃. The crystalline phase, microstructure, and electrical properties of the ceramics were investigated with a special emphasis on the influence of MgO content. The addition of MgO effectively improves the sintembility of the L6NKN ceramics. X-my diffr cfion analysis indicates that the morphotropic phase boundary (MPB) separating orthorhombic and tetragonal phases for the ceramics lies in the range of Mg doping content (x) from 0.3at% to 0.7at%. High electrical properties of the piezoelectric constant (d33=238 pC/N), planar electromechanical coupling coefficient (kp=41.5%), relative dielectric constant (εr=905), and remanent polarization (Pr=38.3 μC/cm2) are obtained from the specimen with x=0.5at%, which suggests that the Li0.06(Na0.5K0.5)0.94Nb(1-2x/5)MgxO3 (x=0.5at%) ceramic is a promising lead-free piezoelectric material.展开更多
Lead-free piezoelectric NaxK1-xNbO3(x = 0.3-0.8)(NKN) ceramics were fabricated by normal sintering at 1060°C for 2 h.Microstructures and electrical properties of the ceramics were investigated with a special ...Lead-free piezoelectric NaxK1-xNbO3(x = 0.3-0.8)(NKN) ceramics were fabricated by normal sintering at 1060°C for 2 h.Microstructures and electrical properties of the ceramics were investigated with a special emphasis on the influence of Na content.The grain size of the produced dense ceramic was decreased by increasing Na content.A discontinuous change in the space distance was found at the composition close to Na0.7K0.3NbO3 ceramic, which indicates the presence of a transitional composition between two different orthorhombic phases, which is similar to the behavior of morphotropic phase boundary(MPB) in NaxK1-xNbO3 ceramics.Such MPB-like behavior contributes to the enhanced piezoelectric coefficient d33 of 122 pC/N, planar-mode electromechanical coupling coefficient kP of 28.6%, and dielectric constant εr of 703, respectively for the Na0.7K0.3NbO3 ceramic.Cubic temperature TC and the transitional temperature TO-T from orthorhombic to tetragonal phase are observed at around 420°C and 200°C, respectively.展开更多
The purpose of this research is to study the effect of thermal conditions such as temperature ramp rate and isothermal times in the phase formation of Pb(Zr1-xTix)O3 solid solutions with composition near the morphotro...The purpose of this research is to study the effect of thermal conditions such as temperature ramp rate and isothermal times in the phase formation of Pb(Zr1-xTix)O3 solid solutions with composition near the morphotropic phase boundary (MPB) by using the conventional ceramic method. The perovskite phase formation and morphology of undoped Pb(Zr0.52Ti0.48)O3 (abbreviated PZT) and doped new material Pb0.98Gd0.02[(Zr0.52Ti0.48)0.98(Mg1/3Nb2/3)0.01(Ni1/3Sb2/3)0.01]O3 (abbreviated PZT-PGMNNS) specimens calcined between 700°C and 900°C have been examined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) while the thermal evolution of the initial precursor was followed by TG-DTA. So the results of these studies have been discussed.展开更多
The flourishing development of emerging electromechanical applications has stimulated an urgent demand for ferroelectric ceramics with high piezoelectric properties and broad temperature usage range.However,it remains...The flourishing development of emerging electromechanical applications has stimulated an urgent demand for ferroelectric ceramics with high piezoelectric properties and broad temperature usage range.However,it remains a challenge to simultaneously obtain good piezoelectricity and reliable temperature stability in lead zirconate titanate(PZT)-based piezoelectric ceramics.To solve this issue,a synergetic strategy was proposed to introduce lead vacancies through niobium doping and construct morphotropic phase boundary(MPB).In this work,Pb_(0.905)Ba_(0.085)(V Pb″)_(0.01)[(Zr_(x)Ti_(1-x))_(0.98)Nb_(0.02)]O_(3)(PBZTN-x)material system was designed.Good comprehensive properties(d_(33)=864 pC/N,k_(p)=84%,T_(C)=201℃)and excellent temperature stability(less than 10%variation of electrical properties from 20℃ to 160℃)were obtained in PBZTN-0.540 ceramics.Good piezoelectricity can be attributed to high extrinsic contribution(domain wall motion)induced by Pb^(2+)vacancies and the existence of nano-domains emerged at MPB,while excellent temperature stability is mainly attributed to the minimized local stress in the lattice and the stable domain structure.展开更多
The dielectric properties of Pb(Zn1/3Nb2/3)O3-PbZrO3-PbTiO3 (PZN-PZ-PT) system near the rhombohedral/tetragonal morphotropic phase boundary (MPB) are carefully studied in this paper.It is found that,for all samples,th...The dielectric properties of Pb(Zn1/3Nb2/3)O3-PbZrO3-PbTiO3 (PZN-PZ-PT) system near the rhombohedral/tetragonal morphotropic phase boundary (MPB) are carefully studied in this paper.It is found that,for all samples,the curves around the temperatures of dielectric permittivity peak show the characteristics of diffuse phase transition.The change in PbZrO3/PbTiO3 ratio has much influence on the dielectric properties of the samples.The extent of diffuse phase transition increases with the increasing Zr/Ti ratio.The samples in rhombohedral region have typical diffuse phase transition in the temperature range measured.However,for the samples with tetragonal symmetry,a spontaneous normal ferroelectric-relaxor phase transition exists at temperature lower than that of permittivity peak.This normal ferroelectric-relaxor phase transition is confirmed by the experiment of thermally driven current.The analysis of TEM reveals that the samples in tetragonal region show a 90° macrodomain structure,while the samples in rhombohedral region have the configuration of microdomain structure.展开更多
New lead-free piezoceramic nanocomposites of Boron Sodium Gadolinium Niobate(BNGN),with general formula(1-x)B_(0.5)Na_(0.5)GdO3xB_(0.5)Na_(0.5)NbO_(3),exhibiting a Morphotropic Phase Boundary(MPB),have been synthesiz...New lead-free piezoceramic nanocomposites of Boron Sodium Gadolinium Niobate(BNGN),with general formula(1-x)B_(0.5)Na_(0.5)GdO3xB_(0.5)Na_(0.5)NbO_(3),exhibiting a Morphotropic Phase Boundary(MPB),have been synthesized following hydrothermal method followed by solid state sintering.The occurrence of MPB at the composition with x=0.55,at which rhombohedral and monoclinic phases are found to coexist,has been confirmed using powder XRD.This accounts for the occurrence of large remnant polarization when the sintered ceramic pellets are subjected to electric poling at 2KV/mm.Uniform microstructure of various compositions is confirmed by SEM imaging.Dielectric and piezoelectric properties of the samples are found to be comparable to those of commercial grade PZT.At the MPB,the d_(33)coefficient is found to be 556 pC/N,which is close to that of commercial grade PZT,which makes BNGN a promising material to substitute lead containing PZT in the near future.展开更多
A morphotropic phase boundary(MPB)with temperature-independent behavior,the so-called vertical MPB was investigated in lead-free(K,Na,Li)NbO_(3)–BaZrO_(3)–(La,Na)TiO_(3)ternary ceramic system.The specimens were synt...A morphotropic phase boundary(MPB)with temperature-independent behavior,the so-called vertical MPB was investigated in lead-free(K,Na,Li)NbO_(3)–BaZrO_(3)–(La,Na)TiO_(3)ternary ceramic system.The specimens were synthesized by a conventional solid-state reaction method,and their crystal structures as well as their MPB were determined from X-ray diffraction patterns measured from room temperature to 300℃.The vertical MPB composition was determined to be 0.9025(K_(0:45)Na0:5Li_(0:05))NbO_(3)–0.09BaZrO_(3)–0.0075(La,Na)TiO_(3)and the Curie temperature was found to be about 195℃.It was successfully confirmed that ceramic samples of this system could be sintered in a reducing atmosphere.For lead-free piezoceramic applications of multilayer actuators using Ni inner electrodes,the results obtained in this work have important practical implications.展开更多
We report the temperature and frequency dependence impedance spectroscopy of(1-x)(Bi_(0.5)Na_(0.5))TiO_(3-x)BaTiO_(3)(abbreviated as BNT-BT)ceramics with 0≤x≤0.07 prepared by conventional solid-state route.X-ray dif...We report the temperature and frequency dependence impedance spectroscopy of(1-x)(Bi_(0.5)Na_(0.5))TiO_(3-x)BaTiO_(3)(abbreviated as BNT-BT)ceramics with 0≤x≤0.07 prepared by conventional solid-state route.X-ray diffraction analysis indicated that a solid solution is formed when BaTiO_(3)diffuses into the(Bi_(0.5)Na_(0.5))TiO_(3)lattice and a morphotropic phase boundary between rhombohedral and tetragonal locates at x=0.07.The microstructure indicated that the grain size reduces and the shape changes from rectangular to quasi-spherical with increase in BaTiO_(3)content.Complex Impedance Spectroscopy analysis suggested the presence of temperature-dependent relaxation process in the materials.The modulus mechanism indicated the nonDebye type of conductivity relaxation in the materials,which is supported by impedance data.The activation energies have been calculated from impedance,electric modulus studies and dc conductivity which suggests that the conductions are ionic in nature.The activation energy increases with increase of BT content up to x=0.05 and decreases at x=0.07 which also indicates the presence of morphotropic phase boundary at x=0.07.展开更多
文摘Potassium Sodium Bismuth Titanate (KNBT) ceramics, with the general formula (1 - x)K0.5Bi0.5TiO3 -xNa0.5Bi0.5TiO3, have been synthesized following hydrothermal route, starting with solid solutions of pure perovskite nanoceramics of KBT and NBT in desired stoichiometric weight ratios, followed by sintering between 850°C and 1000°C for few hours. Pure KNBT nanoceramics with perovskite structure, having mean particle size around 30 nm, could be obtained. Morphology of the samples is found to depend strongly on composition. A change of composition results in a phase change, as evident from X-ray structure analysis. This phase change is a result of rhombohedral to tetragonal morphotropic phase boundary (MPB) in the sample with x around 0.80. Composition dependent occurrence of MPB leads to formation of needle like structures with micrometer length scales. These are typical of tetragonal lamellar structures, suggesting partial induction of tetragonal polar order from rhombohedral structure at MPB. Dielectric and piezoelectric properties, such as dielectric constant and loss, piezoelectric coefficients and figures of merit, exhibit threshold maxima in their values at the composition corresponding to MPB. These values reported for a lead-free piezoceramic, synthesized by a comparatively simple hydrothermal route, are highly promising, and comparable to well-known PZT.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (No20090006110010)the National Basic Research Priorities Program of China (No2007CB613301)the Program of University-Industry Cooperation Supported by the Ministry of Education and Guangdong Province of China (No2008B090500262)
文摘MgO-modified Li0.06(Na0.5K0.5)0.94NbO3O3 (L6NKN) lead-free piezoelectric ceramics were synthesized by normal sintering at a rela- tively low temperature of 1000℃. The crystalline phase, microstructure, and electrical properties of the ceramics were investigated with a special emphasis on the influence of MgO content. The addition of MgO effectively improves the sintembility of the L6NKN ceramics. X-my diffr cfion analysis indicates that the morphotropic phase boundary (MPB) separating orthorhombic and tetragonal phases for the ceramics lies in the range of Mg doping content (x) from 0.3at% to 0.7at%. High electrical properties of the piezoelectric constant (d33=238 pC/N), planar electromechanical coupling coefficient (kp=41.5%), relative dielectric constant (εr=905), and remanent polarization (Pr=38.3 μC/cm2) are obtained from the specimen with x=0.5at%, which suggests that the Li0.06(Na0.5K0.5)0.94Nb(1-2x/5)MgxO3 (x=0.5at%) ceramic is a promising lead-free piezoelectric material.
基金National Natural Science Foundation of China(52062018,51762024)Natural Science Foundation of Jiangxi Province(2019BAB206008,20192BAB212002)Foundation of Jiangxi Provincial Education Department(GJJ190699)。
基金supported by the National Natural Science Foundation of China (No. 50842028)the National Basic Research Priorities Program of China (No. 2007CB613301)
文摘Lead-free piezoelectric NaxK1-xNbO3(x = 0.3-0.8)(NKN) ceramics were fabricated by normal sintering at 1060°C for 2 h.Microstructures and electrical properties of the ceramics were investigated with a special emphasis on the influence of Na content.The grain size of the produced dense ceramic was decreased by increasing Na content.A discontinuous change in the space distance was found at the composition close to Na0.7K0.3NbO3 ceramic, which indicates the presence of a transitional composition between two different orthorhombic phases, which is similar to the behavior of morphotropic phase boundary(MPB) in NaxK1-xNbO3 ceramics.Such MPB-like behavior contributes to the enhanced piezoelectric coefficient d33 of 122 pC/N, planar-mode electromechanical coupling coefficient kP of 28.6%, and dielectric constant εr of 703, respectively for the Na0.7K0.3NbO3 ceramic.Cubic temperature TC and the transitional temperature TO-T from orthorhombic to tetragonal phase are observed at around 420°C and 200°C, respectively.
文摘The purpose of this research is to study the effect of thermal conditions such as temperature ramp rate and isothermal times in the phase formation of Pb(Zr1-xTix)O3 solid solutions with composition near the morphotropic phase boundary (MPB) by using the conventional ceramic method. The perovskite phase formation and morphology of undoped Pb(Zr0.52Ti0.48)O3 (abbreviated PZT) and doped new material Pb0.98Gd0.02[(Zr0.52Ti0.48)0.98(Mg1/3Nb2/3)0.01(Ni1/3Sb2/3)0.01]O3 (abbreviated PZT-PGMNNS) specimens calcined between 700°C and 900°C have been examined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) while the thermal evolution of the initial precursor was followed by TG-DTA. So the results of these studies have been discussed.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52002252 and 52032007).
文摘The flourishing development of emerging electromechanical applications has stimulated an urgent demand for ferroelectric ceramics with high piezoelectric properties and broad temperature usage range.However,it remains a challenge to simultaneously obtain good piezoelectricity and reliable temperature stability in lead zirconate titanate(PZT)-based piezoelectric ceramics.To solve this issue,a synergetic strategy was proposed to introduce lead vacancies through niobium doping and construct morphotropic phase boundary(MPB).In this work,Pb_(0.905)Ba_(0.085)(V Pb″)_(0.01)[(Zr_(x)Ti_(1-x))_(0.98)Nb_(0.02)]O_(3)(PBZTN-x)material system was designed.Good comprehensive properties(d_(33)=864 pC/N,k_(p)=84%,T_(C)=201℃)and excellent temperature stability(less than 10%variation of electrical properties from 20℃ to 160℃)were obtained in PBZTN-0.540 ceramics.Good piezoelectricity can be attributed to high extrinsic contribution(domain wall motion)induced by Pb^(2+)vacancies and the existence of nano-domains emerged at MPB,while excellent temperature stability is mainly attributed to the minimized local stress in the lattice and the stable domain structure.
文摘The dielectric properties of Pb(Zn1/3Nb2/3)O3-PbZrO3-PbTiO3 (PZN-PZ-PT) system near the rhombohedral/tetragonal morphotropic phase boundary (MPB) are carefully studied in this paper.It is found that,for all samples,the curves around the temperatures of dielectric permittivity peak show the characteristics of diffuse phase transition.The change in PbZrO3/PbTiO3 ratio has much influence on the dielectric properties of the samples.The extent of diffuse phase transition increases with the increasing Zr/Ti ratio.The samples in rhombohedral region have typical diffuse phase transition in the temperature range measured.However,for the samples with tetragonal symmetry,a spontaneous normal ferroelectric-relaxor phase transition exists at temperature lower than that of permittivity peak.This normal ferroelectric-relaxor phase transition is confirmed by the experiment of thermally driven current.The analysis of TEM reveals that the samples in tetragonal region show a 90° macrodomain structure,while the samples in rhombohedral region have the configuration of microdomain structure.
文摘New lead-free piezoceramic nanocomposites of Boron Sodium Gadolinium Niobate(BNGN),with general formula(1-x)B_(0.5)Na_(0.5)GdO3xB_(0.5)Na_(0.5)NbO_(3),exhibiting a Morphotropic Phase Boundary(MPB),have been synthesized following hydrothermal method followed by solid state sintering.The occurrence of MPB at the composition with x=0.55,at which rhombohedral and monoclinic phases are found to coexist,has been confirmed using powder XRD.This accounts for the occurrence of large remnant polarization when the sintered ceramic pellets are subjected to electric poling at 2KV/mm.Uniform microstructure of various compositions is confirmed by SEM imaging.Dielectric and piezoelectric properties of the samples are found to be comparable to those of commercial grade PZT.At the MPB,the d_(33)coefficient is found to be 556 pC/N,which is close to that of commercial grade PZT,which makes BNGN a promising material to substitute lead containing PZT in the near future.
文摘A morphotropic phase boundary(MPB)with temperature-independent behavior,the so-called vertical MPB was investigated in lead-free(K,Na,Li)NbO_(3)–BaZrO_(3)–(La,Na)TiO_(3)ternary ceramic system.The specimens were synthesized by a conventional solid-state reaction method,and their crystal structures as well as their MPB were determined from X-ray diffraction patterns measured from room temperature to 300℃.The vertical MPB composition was determined to be 0.9025(K_(0:45)Na0:5Li_(0:05))NbO_(3)–0.09BaZrO_(3)–0.0075(La,Na)TiO_(3)and the Curie temperature was found to be about 195℃.It was successfully confirmed that ceramic samples of this system could be sintered in a reducing atmosphere.For lead-free piezoceramic applications of multilayer actuators using Ni inner electrodes,the results obtained in this work have important practical implications.
文摘We report the temperature and frequency dependence impedance spectroscopy of(1-x)(Bi_(0.5)Na_(0.5))TiO_(3-x)BaTiO_(3)(abbreviated as BNT-BT)ceramics with 0≤x≤0.07 prepared by conventional solid-state route.X-ray diffraction analysis indicated that a solid solution is formed when BaTiO_(3)diffuses into the(Bi_(0.5)Na_(0.5))TiO_(3)lattice and a morphotropic phase boundary between rhombohedral and tetragonal locates at x=0.07.The microstructure indicated that the grain size reduces and the shape changes from rectangular to quasi-spherical with increase in BaTiO_(3)content.Complex Impedance Spectroscopy analysis suggested the presence of temperature-dependent relaxation process in the materials.The modulus mechanism indicated the nonDebye type of conductivity relaxation in the materials,which is supported by impedance data.The activation energies have been calculated from impedance,electric modulus studies and dc conductivity which suggests that the conductions are ionic in nature.The activation energy increases with increase of BT content up to x=0.05 and decreases at x=0.07 which also indicates the presence of morphotropic phase boundary at x=0.07.