The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete sur...The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete surface is easily affected by freeze-thaw cycles, resulting in interface damage, debonding and even supporting failure. Understanding the micromechanisms of the damage and debonding of the rock-concrete interface is essential for improving the interface protection.Therefore, the micromorphology, micromechanical properties, and microdebonding evolution of the sandstone-concrete interface transition zone(ITZ) under varying freeze-thaw cycles(0, 5, 10, 15, 20) were studied using scanning electron microscope, stereoscopic microscope, and nano-indentation. Furthermore, the distribution range and evolution process of ITZ affected by freeze-thaw cycles were defined. Major findings of this study are as follows:(1) The microdamage evolution law of the ITZ under increasing freeze-thaw cycles is clarified, and the relationship between the number of cracks in the ITZ and freeze-thaw cycles is established;(2) As the number of freeze-thaw cycles increases, the ITZ's micromechanical strength decreases, and its development width tends to increase;(3) The damage and debonding evolution mechanisms of sandstone-concrete ITZ under freeze-thaw cycles is revealed, and its micromechanical evolution model induced by freeze-thaw cycles is proposed.展开更多
The microstructure of ITZ (Interfacial Transition Zone) in single glass fibre-cement was investigated by SEM ( Scanning Electron Microscope), EPXM ( Electron Probe X-ray Microanalyzer) and ESEM (Environmental Scanning...The microstructure of ITZ (Interfacial Transition Zone) in single glass fibre-cement was investigated by SEM ( Scanning Electron Microscope), EPXM ( Electron Probe X-ray Microanalyzer) and ESEM (Environmental Scanning Electron Microscope) . The surface morphology of glass fibres and the hydration products in the vicinity of the interfaces were observed. Chemical element (Zr, Ca and Si) distributions over the ITZ thickness were determined by line-scanning with EPXM. The results show that a low-density transition zone existed in the vicinity of glass fibres . The shape of the fibre-cement ITZ was non-symmetrical and its thickness was variable . In the present study, the width of the zone ranged from 1 - 5 μm. Locally, it came to 10μm. Occasionally , some hydration products with high alkalinity were embedded inside the ITZ, and attached on the glass surface , making the ITZ denser and causing local glass to corrode. The test results are helpful for the further understanding of the GRC degradation .展开更多
In order to investigate the bonding behavior and mechanism of the interface prepared by explosive welding, the bonding interfaces of 0 Crl 8Ni9/16MnR were observed and analyzed by means of optical microscope (OM) , ...In order to investigate the bonding behavior and mechanism of the interface prepared by explosive welding, the bonding interfaces of 0 Crl 8Ni9/16MnR were observed and analyzed by means of optical microscope (OM) , scanning electron microscope (SEM) and electron probe microanalysis ( EPMA ). It is found that the welding interfaces are wavy due to the wavy explosive loading. There are three kinds of bonding interfaces i. e. big wave, small wave and micro wave. There are a few seam defects and all elements contents are less than both of the base and .flyer plate in the transition zone of big wavy interface. Moreover, some "holes" result in the lowest bonding strength of big wavy interface nearby the interface in the base plate. All elements contents of the small wavy interface are between two metals, and there are few seam and hole defects, so it is the higher for the bonding strength of small wavy interface. There is no transition zone and defects in the micro wavy interface, so the interface is the best. To gain the high quality small and micro wavy bonding interface the explosive charge should be controlled.展开更多
The grout-rock interfacial property is one of the key factors associated with the strength of grouted rock masses.In this study,direct shear tests and nanoindentation tests were adopted to investigate the mechanical p...The grout-rock interfacial property is one of the key factors associated with the strength of grouted rock masses.In this study,direct shear tests and nanoindentation tests were adopted to investigate the mechanical properties of the grout-rock interface at both the macroscale and microscale.The cohesion of the cement specimens was higher than that of the grout-infilled joint specimens,while their internal friction angle was lower than that of the grout-infilled joint specimens.A“separation method”for identifying the different phases according to the qualitative and quantitative estimations was introduced,and the irregular interfacial transition zone(ITZ)thickness and elastic modulus were estimated.The ITZ thickness of the grout-infilled sandstone specimen ranged from 0 to 30μm,whereas it was within the range of 10-40μm for the grout-infilled mudstone specimen.The average elastic modulus of the ITZ in grout-infilled sandstone and mudstone specimens was approximately 58.2%and 54.1%lower than that of the bulk grout,respectively.Regarding the incidence of the rock type,the interlacing between the grout and sandstone was better developed.The ITZ with a higher porosity and lower modulus had a significant effect on the mechanical properties of the grout-infilled specimens.展开更多
The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of t...The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of the effective ways to open traffic rapidly.In this study,a novel type of rapid repair material,basalt fiber reinforced polymer modified magnesium phosphate cement(BFPMPC),is used to rapidly repair PCCP.Notably,the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones(ITZs)formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair.The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined.The experimental results show that the elastic modulus of ITZ-1 with a width of about20μm can be regarded as 0.098 times of the aggregate,and 0.51 times of the ordinary Portland cement(OPC)mortar.The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC.A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method(XFEM)to study the mechanical properties of the repair interface.The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure,which is consistent with the nano-indentation experimental results.展开更多
We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogr...We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogravimetry and nitrogen absorption porosimetry on cement past,mercury intrusion porosimetry on mortar,and microhardness test on interface transition zone between mortar and coarse aggregate were conducted to evaluate the hydration degree and characterize the micro-structure.Whilst,tests for the rebound strength,abrasion resistance,and chloride ion impenetrability of concrete were conducted to assess the macro-performance.The experimental results show that,affected by the harsh plateau climate,outward surfaces have lower hydration degrees and worse pore structure than inward surfaces.As the hydration of concrete surface is ongoing after the age of 180 days,both the micro-structure and the macro-performance are continuously improved.In the long-term,either the orientation or the depth towards surface does not significantly affect concrete performance.Surface carbonation brings positive effects on mechanical properties but negative effects on the durability.Additionally,standard test result of chloride ion impenetrability is found significantly affected by the atmospheric pressure.For a same batch of concrete,charge passed in plateau regions is obviously lower than that in common regions.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.41772333)the National Natural Science Foundation of Shaanxi Province, China (Grant No.2018JQ5124)the New-Star Talents Promotion Project of Science and Technology of Shaanxi Province, China (Grant No.2019KJXX049)。
文摘The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete surface is easily affected by freeze-thaw cycles, resulting in interface damage, debonding and even supporting failure. Understanding the micromechanisms of the damage and debonding of the rock-concrete interface is essential for improving the interface protection.Therefore, the micromorphology, micromechanical properties, and microdebonding evolution of the sandstone-concrete interface transition zone(ITZ) under varying freeze-thaw cycles(0, 5, 10, 15, 20) were studied using scanning electron microscope, stereoscopic microscope, and nano-indentation. Furthermore, the distribution range and evolution process of ITZ affected by freeze-thaw cycles were defined. Major findings of this study are as follows:(1) The microdamage evolution law of the ITZ under increasing freeze-thaw cycles is clarified, and the relationship between the number of cracks in the ITZ and freeze-thaw cycles is established;(2) As the number of freeze-thaw cycles increases, the ITZ's micromechanical strength decreases, and its development width tends to increase;(3) The damage and debonding evolution mechanisms of sandstone-concrete ITZ under freeze-thaw cycles is revealed, and its micromechanical evolution model induced by freeze-thaw cycles is proposed.
基金Funded by a Chinese-Dutch Cooperation Project "Concrete Composite Technology
文摘The microstructure of ITZ (Interfacial Transition Zone) in single glass fibre-cement was investigated by SEM ( Scanning Electron Microscope), EPXM ( Electron Probe X-ray Microanalyzer) and ESEM (Environmental Scanning Electron Microscope) . The surface morphology of glass fibres and the hydration products in the vicinity of the interfaces were observed. Chemical element (Zr, Ca and Si) distributions over the ITZ thickness were determined by line-scanning with EPXM. The results show that a low-density transition zone existed in the vicinity of glass fibres . The shape of the fibre-cement ITZ was non-symmetrical and its thickness was variable . In the present study, the width of the zone ranged from 1 - 5 μm. Locally, it came to 10μm. Occasionally , some hydration products with high alkalinity were embedded inside the ITZ, and attached on the glass surface , making the ITZ denser and causing local glass to corrode. The test results are helpful for the further understanding of the GRC degradation .
文摘In order to investigate the bonding behavior and mechanism of the interface prepared by explosive welding, the bonding interfaces of 0 Crl 8Ni9/16MnR were observed and analyzed by means of optical microscope (OM) , scanning electron microscope (SEM) and electron probe microanalysis ( EPMA ). It is found that the welding interfaces are wavy due to the wavy explosive loading. There are three kinds of bonding interfaces i. e. big wave, small wave and micro wave. There are a few seam defects and all elements contents are less than both of the base and .flyer plate in the transition zone of big wavy interface. Moreover, some "holes" result in the lowest bonding strength of big wavy interface nearby the interface in the base plate. All elements contents of the small wavy interface are between two metals, and there are few seam and hole defects, so it is the higher for the bonding strength of small wavy interface. There is no transition zone and defects in the micro wavy interface, so the interface is the best. To gain the high quality small and micro wavy bonding interface the explosive charge should be controlled.
基金Project(52004144)supported by the National Natural Science Foundation of ChinaProject supported by the Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team,China。
文摘The grout-rock interfacial property is one of the key factors associated with the strength of grouted rock masses.In this study,direct shear tests and nanoindentation tests were adopted to investigate the mechanical properties of the grout-rock interface at both the macroscale and microscale.The cohesion of the cement specimens was higher than that of the grout-infilled joint specimens,while their internal friction angle was lower than that of the grout-infilled joint specimens.A“separation method”for identifying the different phases according to the qualitative and quantitative estimations was introduced,and the irregular interfacial transition zone(ITZ)thickness and elastic modulus were estimated.The ITZ thickness of the grout-infilled sandstone specimen ranged from 0 to 30μm,whereas it was within the range of 10-40μm for the grout-infilled mudstone specimen.The average elastic modulus of the ITZ in grout-infilled sandstone and mudstone specimens was approximately 58.2%and 54.1%lower than that of the bulk grout,respectively.Regarding the incidence of the rock type,the interlacing between the grout and sandstone was better developed.The ITZ with a higher porosity and lower modulus had a significant effect on the mechanical properties of the grout-infilled specimens.
基金financially supported by the Fundamental Research Funds for the Central Universities(DUT20JC50,DUT17RC(3)006)the National Natural Science Foundation of China(51508137)the Research Center of Civil Aviation Airport Safety and Operation Engineering Technology(KFKT2021-01)。
文摘The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of the effective ways to open traffic rapidly.In this study,a novel type of rapid repair material,basalt fiber reinforced polymer modified magnesium phosphate cement(BFPMPC),is used to rapidly repair PCCP.Notably,the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones(ITZs)formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair.The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined.The experimental results show that the elastic modulus of ITZ-1 with a width of about20μm can be regarded as 0.098 times of the aggregate,and 0.51 times of the ordinary Portland cement(OPC)mortar.The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC.A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method(XFEM)to study the mechanical properties of the repair interface.The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure,which is consistent with the nano-indentation experimental results.
基金Funded by the Science&Technology Project of the Department of Transport of Tibet Autonomous Region(No.XZJTKJ2020[04])。
文摘We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogravimetry and nitrogen absorption porosimetry on cement past,mercury intrusion porosimetry on mortar,and microhardness test on interface transition zone between mortar and coarse aggregate were conducted to evaluate the hydration degree and characterize the micro-structure.Whilst,tests for the rebound strength,abrasion resistance,and chloride ion impenetrability of concrete were conducted to assess the macro-performance.The experimental results show that,affected by the harsh plateau climate,outward surfaces have lower hydration degrees and worse pore structure than inward surfaces.As the hydration of concrete surface is ongoing after the age of 180 days,both the micro-structure and the macro-performance are continuously improved.In the long-term,either the orientation or the depth towards surface does not significantly affect concrete performance.Surface carbonation brings positive effects on mechanical properties but negative effects on the durability.Additionally,standard test result of chloride ion impenetrability is found significantly affected by the atmospheric pressure.For a same batch of concrete,charge passed in plateau regions is obviously lower than that in common regions.