For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of inte...For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively.展开更多
In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buri...In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buried sand and a paleo-weathered rock mass was investigated in the laboratory by direct shear testing. A DRS-1 high pressure soil shear testing machine and orthogonal design method were used in the direct shear tests. Variance and range methods were applied to analyze the sensitivity of each factor that has an influence on the mechanical characters of the interface. The test results show that the normal pressure is the main influencing factor for mechanical characteristics of the interface, while the lithological characters and roughness are minor factors; the shear stress against shear displacement curve for the interface shows an overall hyperbola relationship, no obvious peak stress and dilatancy was observed.When the normal pressure is 6 MPa, the shear strengths of interfaces with different roughness are basically the same, and when the normal pressure is more than 8 MPa, the larger the roughness of the interface, the larger will be the shear strength; the shear strength has a better linear relationship with the normal pressure, which can be described by a linear Mohr–Coulomb criterion.展开更多
Experiments have been done on mass transfer to a liquid-liquid interface on which inert gas bubbles are sparged.To simulate the pyrometallurgy system of melten slag-metal(or matte),aqueous solution-mercury(or zinc ama...Experiments have been done on mass transfer to a liquid-liquid interface on which inert gas bubbles are sparged.To simulate the pyrometallurgy system of melten slag-metal(or matte),aqueous solution-mercury(or zinc amalgam) system was used.The mass transfer coefficients of indicator ions as a function of bubble parameters have been determined.The experimental results show satisfactory agreement with the mass transfer model proposed Previously.展开更多
A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical techn...A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical technique for locating and tracking the free surface of water flow. The relationships between Henry's constant, thermodynamics parameters, and the enlarged topological index were proposed for nonstandard conditions. A series of experiments and numerical simulations were performed to study the transport of benzene and carbinol. The simulation results agreed with the experimental results. Temperature had no effect on mass transfer of pollutants with low transfer free energy and high Henry's constant. The temporal and spatial distribution of pollutants with high transfer free energy and low Henry's constant was affected by temperature. The total enthalpy and total transfer free energy increased significantly with temperature, with significant fluctuations at low temperatures. The total enthalpy and total transfer free energy increased steadily without fluctuation at high temperatures.展开更多
The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel ph...The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel photocatalytic architecture is reported,accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper.The as-obtained samples with a hydrophobic surface exhibit excellent CO_(2)transport and adsorption ability,as well as the building of triphase air-liquid-solid(CO_(2)-H_(2)O-catalyst)joint interfaces,eventually resulting in the inhibition of H2 evolution and great promotion of CO_(2)reduction with a selectivity of 78.6%.The addition of phosphate to reaction environment makes further improvement of CO_(2)photoreduction into carbon fuels with a selectivity of 93.8%and an apparent quantum yield of 0.4%.This work provides new insight for constructing efficient photocatalytic architecture of CO_(2)photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process.展开更多
Based on the method of molecular thermodynamics, the mass transfer mechanism at gas-liquid interface is studied theoretically, and a new mathematical model is proposed. Using laser holographic interference technique, ...Based on the method of molecular thermodynamics, the mass transfer mechanism at gas-liquid interface is studied theoretically, and a new mathematical model is proposed. Using laser holographic interference technique, the hydrodynamics and mass transfer characteristics of CO2 absorption are measured. It is shown that the calculated results are in good agreement with the experimental data.展开更多
Motivated by inconveniences of present hybrid methods,a gradient-augmented hybrid interface capturing method(GAHM) is presented for incompressible two-phase flow.A front tracking method(FTM) is used as the skeleto...Motivated by inconveniences of present hybrid methods,a gradient-augmented hybrid interface capturing method(GAHM) is presented for incompressible two-phase flow.A front tracking method(FTM) is used as the skeleton of the GAHM for low mass loss and resources.Smooth eulerian level set values are calculated from the FTM interface,and are used for a local interface reconstruction.The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change.The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell.The performance of the GAHM is carefully evaluated in a benchmark test.Results show significant improvements of mass loss,clear subgrid structures,highly accurate derivatives(normals and curvatures) and low cost.The GAHM is further coupled with an incompressible multiphase flow solver,Super CE/SE,for more complex and practical applications.The updated solver is evaluated through comparison with an early droplet research.展开更多
Many physical,chemical,and biological processes happen in liquid-vapor interface and are profoundly influenced with the local microstructures.In contrast to the liquid bulk,molecular orientation is the remarkable one ...Many physical,chemical,and biological processes happen in liquid-vapor interface and are profoundly influenced with the local microstructures.In contrast to the liquid bulk,molecular orientation is the remarkable one of asymmetric structural features of the interface.Here we report an experimental method,namely,electron-impact time-delayed mass spectrometry and give a Ion Detector Time-of-Flight Tub*Liquid Microjet Ion Attrac Liq Electron Multiplier Quadrupole Mass Filter Bender j id Beai Electrons Liquid Dump Pulsed Electron Gun brief review about our recent progresses.This brand-new method not only enables us to have more insights into the interfacial structures,as done with small-angle X-ray and neutron scatterings and vibrational sum frequency generation spectroscopy,but also provides opportunity to explore the electron-driven chemical reactions therein.展开更多
Research of structure and properties of Cu-Pb-Cu composite interface, obtained by technology of pack rolling of the pair of mutually insoluble metals, was performed using the methods of metallography, micro- and nano-...Research of structure and properties of Cu-Pb-Cu composite interface, obtained by technology of pack rolling of the pair of mutually insoluble metals, was performed using the methods of metallography, micro- and nano-hardness, mechanical tests, energy-dispersion elementary analyses. The work was aimed at the analyses of possible mechanical mechanisms of mass-transfer, determining the hardness of metal joint in conditions of absence of inter-diffusion. It was shown that different intensity of mass transfer of copper and lead takes place through the composite interface, which corresponds to the results obtained on the other system of dissimilar materials—copper-niobium. Qualitative explanation of these patterns was offered on the basis of more intensive plastic flow of fusible compound of the composite in conditions of roll-bond joining.展开更多
Complex weak structural planes and fault zones induce significant heterogeneity,discontinuity,and nonlinear characteristics of a rock mass.When an earthquake occurs,these characteristics lead to extremely complex seis...Complex weak structural planes and fault zones induce significant heterogeneity,discontinuity,and nonlinear characteristics of a rock mass.When an earthquake occurs,these characteristics lead to extremely complex seismic wave propagation and vibrational behaviors and thus pose a huge threat to the safety and stability of deep buried tunnels.To investigate the wave propagation in a rock mass with different structural planes and fault zones,this study first introduced the theory of elastic wave propagation and elastodynamic principles and used the Zoeppritz equation to describe wave field decomposition and develop a seismic wave response model accordingly.Then,a physical wave propagation model was constructed to investigate seismic waves passing through a fault,and dynamic damage was analyzed by using shaking table tests.Finally,stress wave attenuation and dynamic incompatible deformation mechanisms in a rock mass with fault zones were explored.The results indicate that under the action of weak structural planes,stress waves appear as a complex wave field decomposition phenomenon.When a stress wave spreads to a weak structural plane,its scattering may transform into a tensile wave,generating tensile stress and destabilizing the rock mass;wave dynamic energy is absorbed by a low-strength rock through wave scattering,which significantly weakens the seismic load.Wave propagation accelerates the initiation and expansion of internal defects in the rock mass and leads to a dynamic incompatible deformation.This is one of the main causes for large deformation and even instability within rock masses.These findings provide an important reference and guide with respect to stability analysis of rock mass with weak structural planes and fault zones.展开更多
The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as b...The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as blood and plasma.In recent years,our lab has developed three novel SPME-MS techniques:SPME-microfluidic open interface-MS(SPME-MOI-MS),coated blade spray-MS(CBS-MS),and SPME-probe electrospray ionization-MS(SPME-PESI-MS).The fast and high-throughput nature of these SPME-MS technologies makes them attractive options for point-of-care analysis and anti-doping testing.However,all these three techniques utilize different SPME geometries and were tested with different MS instruments.Lack of comparative data makes it difficult to determine which of these methodologies is the best option for any given application.This work fills this gap by making a comprehensive comparison of these three technologies with different SPME devices including SPME fibers,CBS blades,and SPME-PESI probes and SPME-liquid chromatography-MS(SPME-LC-MS)for the analysis of drugs of abuse using the same MS instrument.Furthermore,for the first time,we developed different desorption chambers for MOI-MS for coupling with SPME fibers,CBS blades,and SPME-PESI probes,thus illustrating the universality of this approach.In total,eight analytical methods were developed,with the experimental data showing that all the SPME-based methods provided good analytical performance with R^(2)of linearities larger than 0.9925,accuracies between 81%and 118%,and good precision with an RSD%≤13%.展开更多
Rechargeable lithium-ion batteries(LIBs)represent the highest energy density in the contemporary energy storage community,typically delivering a practical energy density of 150-350 Wh kg-1in the current technique,whic...Rechargeable lithium-ion batteries(LIBs)represent the highest energy density in the contemporary energy storage community,typically delivering a practical energy density of 150-350 Wh kg-1in the current technique,which can hardly satisfy the evergrowing demand for the portable electronic devices and power tools requiring long service time[1-3].展开更多
基金funding support from National Natural Science Foundation of China(Grant No.41831278).
文摘For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively.
基金the National Natural Science Foundation of China(Nos.41172290 and40572160)
文摘In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buried sand and a paleo-weathered rock mass was investigated in the laboratory by direct shear testing. A DRS-1 high pressure soil shear testing machine and orthogonal design method were used in the direct shear tests. Variance and range methods were applied to analyze the sensitivity of each factor that has an influence on the mechanical characters of the interface. The test results show that the normal pressure is the main influencing factor for mechanical characteristics of the interface, while the lithological characters and roughness are minor factors; the shear stress against shear displacement curve for the interface shows an overall hyperbola relationship, no obvious peak stress and dilatancy was observed.When the normal pressure is 6 MPa, the shear strengths of interfaces with different roughness are basically the same, and when the normal pressure is more than 8 MPa, the larger the roughness of the interface, the larger will be the shear strength; the shear strength has a better linear relationship with the normal pressure, which can be described by a linear Mohr–Coulomb criterion.
文摘Experiments have been done on mass transfer to a liquid-liquid interface on which inert gas bubbles are sparged.To simulate the pyrometallurgy system of melten slag-metal(or matte),aqueous solution-mercury(or zinc amalgam) system was used.The mass transfer coefficients of indicator ions as a function of bubble parameters have been determined.The experimental results show satisfactory agreement with the mass transfer model proposed Previously.
基金supported by the National Natural Science Foundation of China(Grant No.51109106)the Natural Science Foundation of Jiangsu Province(Grant No.BK20130946)the Qing Lan Project of Jiangsu Province
文摘A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical technique for locating and tracking the free surface of water flow. The relationships between Henry's constant, thermodynamics parameters, and the enlarged topological index were proposed for nonstandard conditions. A series of experiments and numerical simulations were performed to study the transport of benzene and carbinol. The simulation results agreed with the experimental results. Temperature had no effect on mass transfer of pollutants with low transfer free energy and high Henry's constant. The temporal and spatial distribution of pollutants with high transfer free energy and low Henry's constant was affected by temperature. The total enthalpy and total transfer free energy increased significantly with temperature, with significant fluctuations at low temperatures. The total enthalpy and total transfer free energy increased steadily without fluctuation at high temperatures.
文摘The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel photocatalytic architecture is reported,accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper.The as-obtained samples with a hydrophobic surface exhibit excellent CO_(2)transport and adsorption ability,as well as the building of triphase air-liquid-solid(CO_(2)-H_(2)O-catalyst)joint interfaces,eventually resulting in the inhibition of H2 evolution and great promotion of CO_(2)reduction with a selectivity of 78.6%.The addition of phosphate to reaction environment makes further improvement of CO_(2)photoreduction into carbon fuels with a selectivity of 93.8%and an apparent quantum yield of 0.4%.This work provides new insight for constructing efficient photocatalytic architecture of CO_(2)photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process.
基金Supported by the National Natural Science Foundation of China(No.20176036).
文摘Based on the method of molecular thermodynamics, the mass transfer mechanism at gas-liquid interface is studied theoretically, and a new mathematical model is proposed. Using laser holographic interference technique, the hydrodynamics and mass transfer characteristics of CO2 absorption are measured. It is shown that the calculated results are in good agreement with the experimental data.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972010,11028206,11371069,11372052,11402029,and 11472060)the Science and Technology Development Foundation of China Academy of Engineering Physics(CAEP),China(Grant No.2014B0201030)the Defense Industrial Technology Development Program of China(Grant No.B1520132012)
文摘Motivated by inconveniences of present hybrid methods,a gradient-augmented hybrid interface capturing method(GAHM) is presented for incompressible two-phase flow.A front tracking method(FTM) is used as the skeleton of the GAHM for low mass loss and resources.Smooth eulerian level set values are calculated from the FTM interface,and are used for a local interface reconstruction.The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change.The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell.The performance of the GAHM is carefully evaluated in a benchmark test.Results show significant improvements of mass loss,clear subgrid structures,highly accurate derivatives(normals and curvatures) and low cost.The GAHM is further coupled with an incompressible multiphase flow solver,Super CE/SE,for more complex and practical applications.The updated solver is evaluated through comparison with an early droplet research.
基金This work is supported by the Ministry of Science and Technology of China(No.2017YFA0303502)the National Natural Science Foundation of China(No.21625301)We also thank Ling-ling Chen for her early contribution to the apparatus construction and Dr.Cen-feng Fu at University of Science and Technology of China for the theoretical simulations.
文摘Many physical,chemical,and biological processes happen in liquid-vapor interface and are profoundly influenced with the local microstructures.In contrast to the liquid bulk,molecular orientation is the remarkable one of asymmetric structural features of the interface.Here we report an experimental method,namely,electron-impact time-delayed mass spectrometry and give a Ion Detector Time-of-Flight Tub*Liquid Microjet Ion Attrac Liq Electron Multiplier Quadrupole Mass Filter Bender j id Beai Electrons Liquid Dump Pulsed Electron Gun brief review about our recent progresses.This brand-new method not only enables us to have more insights into the interfacial structures,as done with small-angle X-ray and neutron scatterings and vibrational sum frequency generation spectroscopy,but also provides opportunity to explore the electron-driven chemical reactions therein.
文摘Research of structure and properties of Cu-Pb-Cu composite interface, obtained by technology of pack rolling of the pair of mutually insoluble metals, was performed using the methods of metallography, micro- and nano-hardness, mechanical tests, energy-dispersion elementary analyses. The work was aimed at the analyses of possible mechanical mechanisms of mass-transfer, determining the hardness of metal joint in conditions of absence of inter-diffusion. It was shown that different intensity of mass transfer of copper and lead takes place through the composite interface, which corresponds to the results obtained on the other system of dissimilar materials—copper-niobium. Qualitative explanation of these patterns was offered on the basis of more intensive plastic flow of fusible compound of the composite in conditions of roll-bond joining.
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:B220202058National Natural Science Foundation of China,Grant/Award Number:41831278+1 种基金National Basic Research Program of China(973 Program),Grant/Award Number:2015CB057903ARC Future Fellowship,Grant/Award Number:FT140100019。
文摘Complex weak structural planes and fault zones induce significant heterogeneity,discontinuity,and nonlinear characteristics of a rock mass.When an earthquake occurs,these characteristics lead to extremely complex seismic wave propagation and vibrational behaviors and thus pose a huge threat to the safety and stability of deep buried tunnels.To investigate the wave propagation in a rock mass with different structural planes and fault zones,this study first introduced the theory of elastic wave propagation and elastodynamic principles and used the Zoeppritz equation to describe wave field decomposition and develop a seismic wave response model accordingly.Then,a physical wave propagation model was constructed to investigate seismic waves passing through a fault,and dynamic damage was analyzed by using shaking table tests.Finally,stress wave attenuation and dynamic incompatible deformation mechanisms in a rock mass with fault zones were explored.The results indicate that under the action of weak structural planes,stress waves appear as a complex wave field decomposition phenomenon.When a stress wave spreads to a weak structural plane,its scattering may transform into a tensile wave,generating tensile stress and destabilizing the rock mass;wave dynamic energy is absorbed by a low-strength rock through wave scattering,which significantly weakens the seismic load.Wave propagation accelerates the initiation and expansion of internal defects in the rock mass and leads to a dynamic incompatible deformation.This is one of the main causes for large deformation and even instability within rock masses.These findings provide an important reference and guide with respect to stability analysis of rock mass with weak structural planes and fault zones.
基金the National Science Centre,Poland(Grant No.:2020/04/X/NZ9/01281).
文摘The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as blood and plasma.In recent years,our lab has developed three novel SPME-MS techniques:SPME-microfluidic open interface-MS(SPME-MOI-MS),coated blade spray-MS(CBS-MS),and SPME-probe electrospray ionization-MS(SPME-PESI-MS).The fast and high-throughput nature of these SPME-MS technologies makes them attractive options for point-of-care analysis and anti-doping testing.However,all these three techniques utilize different SPME geometries and were tested with different MS instruments.Lack of comparative data makes it difficult to determine which of these methodologies is the best option for any given application.This work fills this gap by making a comprehensive comparison of these three technologies with different SPME devices including SPME fibers,CBS blades,and SPME-PESI probes and SPME-liquid chromatography-MS(SPME-LC-MS)for the analysis of drugs of abuse using the same MS instrument.Furthermore,for the first time,we developed different desorption chambers for MOI-MS for coupling with SPME fibers,CBS blades,and SPME-PESI probes,thus illustrating the universality of this approach.In total,eight analytical methods were developed,with the experimental data showing that all the SPME-based methods provided good analytical performance with R^(2)of linearities larger than 0.9925,accuracies between 81%and 118%,and good precision with an RSD%≤13%.
基金support from the National Natural Science Foundation of China(21972133,21805070,21605136,21733012,and 21633008)the Newton Advanced Fellowships(NAF/R2/180603)+1 种基金the Guangxi Department of Education(2019KY0394)the"Scientist Studio Funding"from Tianmu Lake Institute of Advanced Energy Storage Technologies Co.,Ltd.
文摘Rechargeable lithium-ion batteries(LIBs)represent the highest energy density in the contemporary energy storage community,typically delivering a practical energy density of 150-350 Wh kg-1in the current technique,which can hardly satisfy the evergrowing demand for the portable electronic devices and power tools requiring long service time[1-3].