近年来,Logo检测在知识产权保护和产品品牌管理等领域得到了广泛应用;针对Logo检测中的复杂背景和多尺度问题,提出了一种改进Mosaic数据增强和特征融合的Logo检测算法;将6张原始图片随机翻转、缩放和拼接构成合成图像,与单张图像和由4...近年来,Logo检测在知识产权保护和产品品牌管理等领域得到了广泛应用;针对Logo检测中的复杂背景和多尺度问题,提出了一种改进Mosaic数据增强和特征融合的Logo检测算法;将6张原始图片随机翻转、缩放和拼接构成合成图像,与单张图像和由4张原始图片合成的图像一起作为YOLOv4模型的训练输入,并确定3种输入形式的最优比例,同时使用一种新的训练策略,改进的Mosaic数据增强方法丰富了Logo对象的尺度和背景,使模型更好地学习全局和局部特征;在路径整合网络(PANet)的基础上引入跨层连接、重复堆叠、直接连接和加权特征融合等操作,改进的PANet扩大了模型感受野,增强了模型的多尺度特征表达能力;实验结果表明,提出的MP-YOLOv4算法在减小21.7%模型大小的同时,IoU(intersection of union)等于0.5时的平均精度上达到了67.4%,较YOLOv4提高了2.4%,同时在多尺度目标上的检测性能得到了改善。展开更多
针对在滚动轴承故障诊断领域中存在的故障样本较少,健康样本丰富所导致的故障类别失衡问题以及环境中存在噪声与人为噪声标签干扰等问题,提出了一种基于混合裁剪失衡数据增强与SwinNet网络相结合的故障诊断模型(fault diagnosis model c...针对在滚动轴承故障诊断领域中存在的故障样本较少,健康样本丰富所导致的故障类别失衡问题以及环境中存在噪声与人为噪声标签干扰等问题,提出了一种基于混合裁剪失衡数据增强与SwinNet网络相结合的故障诊断模型(fault diagnosis model combining mixed-cutout imbalance data augmentation and SwinNet,SwinNet-MCIDA)。首先,借鉴图像分类数据增强方法,利用混合裁剪失衡数据增强算法对失衡类别的数据进行裁剪、混合处理生成新的故障样本来增加样本量,构造出增强数据集,然后对增强数据集进行小波变换转换成时频图像,将所得图像输入到卷积神经网络与Swin Transformer编码器相结合的SwinNet网络模型中,进行特征提取和故障分类,从而实现滚动轴承故障的高效诊断。试验结果表明,该文所提出的SwinNet-MCIDA故障诊断方法不仅可以很好地解决滚动轴承故障诊断领域故障类别失衡问题,而且也可以很好地应对故障数据中存在环境噪声问题与人为噪声标签干扰问题。展开更多
当前电网数字化转型升级,电力设备智能运维技术快速发展,在运维过程中积累了大量包含电网重要信息的电力设备缺陷文本。由于文本数据标签稀疏,以及描述语言的模糊性、差异性等问题,电力文本中的运维信息难以被有效挖掘。文章提出了一种...当前电网数字化转型升级,电力设备智能运维技术快速发展,在运维过程中积累了大量包含电网重要信息的电力设备缺陷文本。由于文本数据标签稀疏,以及描述语言的模糊性、差异性等问题,电力文本中的运维信息难以被有效挖掘。文章提出了一种针对电力设备缺陷文本的数据增强方法。首先,使用缺陷文本数据集微调预训练模型ERNIE(enhanced representation through knowledge integration),应用多阶段知识掩码策略将电气领域专业知识集成到对缺陷文本的动态编码中;然后在流形假设的基础上基于降噪自动编码器架构设计破坏函数和重建函数,遵循基于信息价值的掩码单元选择策略构建破坏函数,基于微调过的ERNIE构建重建函数,在“破坏-重建”过程中获得位于原始数据流形范围内的增强样本;其次对增强数据集基于影响函数和多样性度量进行数据选择,过滤掉数据质量差和重复度高的增强样本;最后通过多层训练框架,将增强数据应用于各种缺陷文本挖掘任务。算例基于真实设备巡检、检修记录构建了电力设备缺陷文本等级分类任务。结果表明,所提出的算法对缺陷文本挖掘效果有较大提升,并且可以广泛灵活地应用在多种电力设备缺陷文本挖掘任务中。展开更多
文摘近年来,Logo检测在知识产权保护和产品品牌管理等领域得到了广泛应用;针对Logo检测中的复杂背景和多尺度问题,提出了一种改进Mosaic数据增强和特征融合的Logo检测算法;将6张原始图片随机翻转、缩放和拼接构成合成图像,与单张图像和由4张原始图片合成的图像一起作为YOLOv4模型的训练输入,并确定3种输入形式的最优比例,同时使用一种新的训练策略,改进的Mosaic数据增强方法丰富了Logo对象的尺度和背景,使模型更好地学习全局和局部特征;在路径整合网络(PANet)的基础上引入跨层连接、重复堆叠、直接连接和加权特征融合等操作,改进的PANet扩大了模型感受野,增强了模型的多尺度特征表达能力;实验结果表明,提出的MP-YOLOv4算法在减小21.7%模型大小的同时,IoU(intersection of union)等于0.5时的平均精度上达到了67.4%,较YOLOv4提高了2.4%,同时在多尺度目标上的检测性能得到了改善。
文摘针对在滚动轴承故障诊断领域中存在的故障样本较少,健康样本丰富所导致的故障类别失衡问题以及环境中存在噪声与人为噪声标签干扰等问题,提出了一种基于混合裁剪失衡数据增强与SwinNet网络相结合的故障诊断模型(fault diagnosis model combining mixed-cutout imbalance data augmentation and SwinNet,SwinNet-MCIDA)。首先,借鉴图像分类数据增强方法,利用混合裁剪失衡数据增强算法对失衡类别的数据进行裁剪、混合处理生成新的故障样本来增加样本量,构造出增强数据集,然后对增强数据集进行小波变换转换成时频图像,将所得图像输入到卷积神经网络与Swin Transformer编码器相结合的SwinNet网络模型中,进行特征提取和故障分类,从而实现滚动轴承故障的高效诊断。试验结果表明,该文所提出的SwinNet-MCIDA故障诊断方法不仅可以很好地解决滚动轴承故障诊断领域故障类别失衡问题,而且也可以很好地应对故障数据中存在环境噪声问题与人为噪声标签干扰问题。
文摘当前电网数字化转型升级,电力设备智能运维技术快速发展,在运维过程中积累了大量包含电网重要信息的电力设备缺陷文本。由于文本数据标签稀疏,以及描述语言的模糊性、差异性等问题,电力文本中的运维信息难以被有效挖掘。文章提出了一种针对电力设备缺陷文本的数据增强方法。首先,使用缺陷文本数据集微调预训练模型ERNIE(enhanced representation through knowledge integration),应用多阶段知识掩码策略将电气领域专业知识集成到对缺陷文本的动态编码中;然后在流形假设的基础上基于降噪自动编码器架构设计破坏函数和重建函数,遵循基于信息价值的掩码单元选择策略构建破坏函数,基于微调过的ERNIE构建重建函数,在“破坏-重建”过程中获得位于原始数据流形范围内的增强样本;其次对增强数据集基于影响函数和多样性度量进行数据选择,过滤掉数据质量差和重复度高的增强样本;最后通过多层训练框架,将增强数据应用于各种缺陷文本挖掘任务。算例基于真实设备巡检、检修记录构建了电力设备缺陷文本等级分类任务。结果表明,所提出的算法对缺陷文本挖掘效果有较大提升,并且可以广泛灵活地应用在多种电力设备缺陷文本挖掘任务中。