期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Study on the effect of ground motion direction on the response of engineering structure 被引量:1
1
作者 Sun Menghan Fan Feng +1 位作者 Sun Baitao Zhi Xudong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期649-656,共8页
Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on... Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on a structure are studied herein. Ground motion records usually contain three vertical ground motion data, which are obtained by sensors arranged in accordance with the EW (East -West) direction, NS (South- North) direction and perpendicular to the surface (z) direction, referring to the construction standard of seismic stations. The seismic records in the EW and NS directions are converted to Cartesian coordinates in accordance with the rotation of θ = 0°-180°, and consequently, a countless group of new ground motion time histories are obtained. Then, the characteristics of the ground motion time history and response spectrum of each group were studied, resulting in the following observations: (1) the peak and phase of ground motion are changed with the rotation of direction θ, so that the direction θ of the maximum peak ground motion can be determined; (2) response spectrum values of each group of ground motions change along with the direction θ, and their peak, predominant period and declining curve are also different as the changes occur; then, the angle θ in the direction of the maximum peak value or the widest predominant period can be determined; and (3) the seismic response of structures with different directions of ground motion inputs has been analyzed under the same earthquake record, and the results show the difference. For some ground motion records, such as the Taft seismic wave, these differences are significant. Next, the Lushan middle school gymnasium structure was analyzed and the calculation was checked using the proposed method, where the internal force of the upper space truss varied from 25% to 28%. The research results presented herein can be used for reference in choosing the ground motion when checking the actual damage to structures following earthquakes and explaining the seismic damage. Meanwhile, it also provides a reference value for research into the most severe ground motion. 展开更多
关键词 direction of grotmd motion structure effect coordinate transformation response spectrum
下载PDF
Motion direction prediction through spike timing based on micro Capsnet networks 被引量:1
2
作者 ZHANG HuaLiang LIU Ji +6 位作者 WANG BaoZeng DAI Jun LIAN JinLing KE Ang ZHAO YuWei ZHOU Jin WANG ChangYong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第11期2763-2775,共13页
Neural activity extraction and neural decoding from neural signals are an important part of critical components of brain-computer interface systems.With the development of brain-computer interface technology,the deman... Neural activity extraction and neural decoding from neural signals are an important part of critical components of brain-computer interface systems.With the development of brain-computer interface technology,the demand for precise external control and nervous activities in macaque monkey during unilateral hand grasp has increased the complexity of control and neural decoding,which puts forward higher requirements for the accuracy and stability of feature extraction and neural decoding.In this study,a micro Capsnet network architecture that consists of a few network layers,a vector feature structure,and optimization network parameters,is proposed to decrease the computing time and complexity,decrease artificial debugging,and improve the decoding accuracy.Compared with KNN,SVM,XGBOOST,CNN,Simple RNN,and LSTM,the algorithm in this study improves the decoding accuracy by 98.03%,and achieves state-of-the-art accuracy and stronger robustness.Furthermore,the proposed algorithm can further enhance the control accuracy in the brain-computer interface. 展开更多
关键词 spike timing micro Capsnet network brain-computer interface motion direction prediction optimized network parameter
原文传递
Influence of earthquake direction on the seismic response of irregular plan RC frame buildings 被引量:3
3
作者 Magliulo G Maddaloni G Petrone C 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期243-256,共14页
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismi... The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations. 展开更多
关键词 plan irregularity nonlinear analyses reinforced concrete buildings seismic performance ground motion directionality
下载PDF
考虑地震方向性的高耸RC烟囱结构易损性分析 被引量:5
4
作者 周长东 田苗旺 +1 位作者 王朋国 张许 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第11期11-22,共12页
选用240 m高的某钢筋混凝土烟囱作为研究对象,通过有限元软件ABAQUS,采用复合壳单元建立了相应的非线性有限元分析模型.为考虑地震动的不确定性,根据谱相容性原则,选择了20条合理的地震动记录,进行增量动力分析.分别以材料应变和地面峰... 选用240 m高的某钢筋混凝土烟囱作为研究对象,通过有限元软件ABAQUS,采用复合壳单元建立了相应的非线性有限元分析模型.为考虑地震动的不确定性,根据谱相容性原则,选择了20条合理的地震动记录,进行增量动力分析.分别以材料应变和地面峰值加速度作为结构地震需求参数和地震动强度参数,通过增量动力分析将三维地震动以7种不同入射角度作用于结构并获得的结构地震响应,采用能力需求比模型的曲线拟合法计算结构的易损性.通过钢筋和混凝土的材料应变定义了4个损伤状态限值,最终得到了考虑地震方向性的高耸钢筋混凝土烟囱结构地震易损性曲线.研究结果表明,考虑地震方向性后,当PGA小于0.2g时,该烟囱的最不利地震波输入角度大约在75°~90°左右,结构完全损伤概率大约增大了1.5%;当PGA大于0.2g时,该烟囱的最不利地震波输入角度在45°左右,结构完全损伤概率大约增大了2.4%. 展开更多
关键词 烟囱 地震响应 三维地震 增量动力分析 地震作用方向性
下载PDF
An explanation of the large PGA value of 2013 MS 7.0 Lushan earthquake at 51BXD station through topographic analysis
5
作者 Zhijun Dai Xiaojun Li 《Earthquake Science》 2013年第3期199-205,共7页
In Ms7.0 Lushan earthquake, a large amount of strong ground motion recordings were collected. In this paper, we analyze the recordings carefully. The abnor- mality of ground motion recordings is identified through a l... In Ms7.0 Lushan earthquake, a large amount of strong ground motion recordings were collected. In this paper, we analyze the recordings carefully. The abnor- mality of ground motion recordings is identified through a log linear regression. In the station of 51BXD, the PGA value has exceeded 1 g, which is the biggest peak ground acceleration (PGA) value obtained from all recordings in this earthquake. The log linear relation shows the PGA value in this station is abnormally large. As this station is located on the footage of a hill, the topographic amplifi- cation factor is explored in order to explain this abnor- mality. Through 3D numerical modeling using spectral element method with transmitting boundary conditions, the amplification factor is quantized. In this station, the topo- graphic amplification is highly polarized in the direction of East-West which agrees with the empirical recordings. This research result suggests us in future directionality of topographic amplification should be considered in the aseismic design. 展开更多
关键词 Strong ground motion Topographicamplification Ground motion directionality
下载PDF
层状围岩隧道交叉结构地震方向敏感性分析
6
作者 陈政 郭春 +2 位作者 谌桂舟 赵威 申玉生 《地震工程与工程振动》 CSCD 北大核心 2022年第1期154-168,共15页
依托某层状围岩深埋铁路隧道工程,以主线单线隧道与横通道正交结构为研究对象,通过ABAQUS建立有限元分析模型。选取12条地震波数据,模拟基岩SV波地震作用,调整地震动峰值加速度和地震动入射方向,对研究结构随地震动输入方向的敏感性进... 依托某层状围岩深埋铁路隧道工程,以主线单线隧道与横通道正交结构为研究对象,通过ABAQUS建立有限元分析模型。选取12条地震波数据,模拟基岩SV波地震作用,调整地震动峰值加速度和地震动入射方向,对研究结构随地震动输入方向的敏感性进行分析。研究分析得到:二次衬砌在地震入射角度为30°~45°时对地震动方向变化敏感性较低,初期支护在地震角度为60°~90°时对地震方向变化的敏感性较低,初期支护和二次衬砌在地震入射角度为45°~60°时对地震动方向变化敏感性较大;受力最不利的地震入射角度为15°~45°;位于主隧道与横通道交叉口拱脚附近二次衬砌受地震方向影响最敏感,横通道拱脚靠近主隧道5 m范围初期支护受地震方向影响最敏感。 展开更多
关键词 铁路隧道 地震作用方向 敏感性分析 横通道 层状围岩
下载PDF
Optimal control of stretching process of flexible solar arrays on spacecraft based on a hybrid optimization strategy 被引量:2
7
作者 Qijia Yao Xinsheng Ge 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期258-263,共6页
The optimal control of multibody spacecraft during the stretching process of solar arrays is investigated,and a hybrid optimization strategy based on Gauss pseudospectral method(GPM) and direct shooting method(DSM... The optimal control of multibody spacecraft during the stretching process of solar arrays is investigated,and a hybrid optimization strategy based on Gauss pseudospectral method(GPM) and direct shooting method(DSM) is presented. First, the elastic deformation of flexible solar arrays was described approximately by the assumed mode method, and a dynamic model was established by the second Lagrangian equation. Then, the nonholonomic motion planning problem is transformed into a nonlinear programming problem by using GPM. By giving fewer LG points, initial values of the state variables and control variables were obtained. A serial optimization framework was adopted to obtain the approximate optimal solution from a feasible solution. Finally, the control variables were discretized at LG points, and the precise optimal control inputs were obtained by DSM. The optimal trajectory of the system can be obtained through numerical integration. Through numerical simulation, the stretching process of solar arrays is stable with no detours, and the control inputs match the various constraints of actual conditions.The results indicate that the method is effective with good robustness. 展开更多
关键词 motion planning Multibody spacecraft Optimal control Gauss pseudospectral method Direct shooting method
下载PDF
A fluctuating lattice-Boltzmann model for direct numerical simulation of particle Brownian motion 被引量:3
8
作者 Deming Nie 《Particuology》 SCIE EI CAS CSCD 2009年第6期501-506,共6页
A single-relaxation-time fluctuating lattice-Boltzmann (LB) model for direct numerical simulation (DNS) of particle Brownian motion is established by adding a fluctuating component to the lattice-Boltzmann equatio... A single-relaxation-time fluctuating lattice-Boltzmann (LB) model for direct numerical simulation (DNS) of particle Brownian motion is established by adding a fluctuating component to the lattice-Boltzmann equations (LBEs). The fluctuating term is proved to be the random stress tensor in fluctuating hydrodynamics by recovering Navier-Stokes equations from LBEs through a Chapman-Enskog expansion. A three-dimensional implementation of the model is also presented, along with simulations of a single spherical particle and 125 spherical particles at short times. Numerical results including the meansquare displacement, velocity autocorrelation function and self-diffusion coefficient of particles compare favorably with theoretical results and previous numerical results. 展开更多
关键词 Fluctuating hydrodynamics Lattice-goltzmann method Brownian motion Direct numerical simulation
原文传递
Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control 被引量:15
9
作者 Zhang Yu Chen Jing Shen Lincheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1038-1056,共19页
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits... This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment. 展开更多
关键词 Air-to-surface attack Direct method Inverse dynamics motion planning Real time control Receding horizon control Trajectory planning Unmanned combat aerial vehicles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部