期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Typical Motion and Extinction Characteristics of the Secondary Arcs Associated with Half-Wavelength Transmission Lines 被引量:2
1
作者 丛浩熹 李庆民 +1 位作者 行晋源 李劲松 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第9期843-847,共5页
Secondary arc discharge is a complicated physical phenomenon and one of the key fundamental issues associated with ultra high voltage (UHV) half-wavelength transmission lines (HWTL). With the establishment of a ph... Secondary arc discharge is a complicated physical phenomenon and one of the key fundamental issues associated with ultra high voltage (UHV) half-wavelength transmission lines (HWTL). With the establishment of a physicM simulation platform for the HWTLs, experiments were carried out regarding the motion and extinction characteristics of secondary arcs. The cathode arc root and the anode arc root were found to show an obvious polarity effect while the arc column was moving in a spirM, due to their different motion mechanisms. The extinction behavior was also recorded and experiments were designed with different compensation conditions. Results show that the arcing time can be greatly reduced if there exists an electrical compensation network. The research provides fundamentals for understanding the physics involved, especially the motion and extinction mechanisms of the secondary arcs. 展开更多
关键词 secondary arc discharge arc root arc column motion mechanism
下载PDF
MECHANISM DESIGN AND MOTION ANALYSIS OF A SPHERICAL MOBILE ROBOT 被引量:17
2
作者 Zhan Qiang Jia Chuan +1 位作者 Ma Xiaohui Zhai Yutao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期542-545,共4页
A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is d... A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is developed with Lagrange method and factors affecting the driving torque of two motors are analyzed. The relationship between the turning radius of the robot and the length of two links is discussed in order to optimize its mechanism design. Simulation and experimental results demonstrate the good controllability and motion performance of BHQ-1. 展开更多
关键词 Spherical mobile robot Mechanism design motion analysis
下载PDF
SEMANTIC NETWORK PRESENTATION OF MECHANICAL MOTION SCHEME AND ITS MECHANISM TYPES SELECTION METHOD 被引量:2
3
作者 Ye Zhigang Zou Huijun +1 位作者 Zhang Qing Tian Yongli School of Mechanical Engineering,Shanghai Jiaotong University,Shanghai 200030, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期253-256,共4页
The presentation method of the mechanical motion scheme must support thewhole process of conceptual design. To meet the requirement, a semantic network method is selectedto represent process level, action level, mecha... The presentation method of the mechanical motion scheme must support thewhole process of conceptual design. To meet the requirement, a semantic network method is selectedto represent process level, action level, mechanism level and relationships among them. Computeraided motion cycle chart exploration can be realized by the representation and revision of timecoordination of mechanism actions and their effect on the design scheme. The uncertain reasoningtechnology based on semantic network is applied in the mechanism types selection of the needledriving mechanism of industrial sewing mechanism, and the application indicated it is correct,useful and advance. 展开更多
关键词 Semantic network Scheme design Closeness degree motion cycle chart Mechanical motion scheme
下载PDF
Design and Analysis of a Mechanical Device to Harvest Energy from Human Footstep Motion 被引量:1
4
作者 XIE Longhan DU Ruxu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期738-743,共6页
Portable electronics is usually powered by battery,which is not sustainable not only to the longtime outdoor use but also to our living environment.There is rich kinetic energy in footstep motion during walking,so it ... Portable electronics is usually powered by battery,which is not sustainable not only to the longtime outdoor use but also to our living environment.There is rich kinetic energy in footstep motion during walking,so it is ideal to harvest the kinetic energy from human footstep motion as power source for portable electronic devices.In this paper,a novel mechanism based on dual-oscillating mode is designed to harvest the kinetic energy from footstep motion.The harvester contains two oscillating sub-mechanisms:one is spring-mass oscillator to absorb the vibration from external excitation,i.e.,the footstep motion,and the other is cantilever beam with tip mass for amplifying the vibration.Theoretic analysis shows that the dual-oscillating mechanism can be more effectively harness the foot step motion.The energy conversion sub-mechanism is based on the electromagnetic induction,where the wire coils fixed at the tip end of the cantilever beam serves as the slider and permanent magnets and yoke form the changing magnetic field.Simulation shows that the harvester,with total mass 70 g,can produce about 100 mW of electricity at the walking speed of 2 steps per second. 展开更多
关键词 energy harvesting dual-oscillating mechanism human motion
下载PDF
Bionic Attitude Transformation Combined with Closed Motion for a Free Floating Space Robot 被引量:1
5
作者 Zhanpeng Sun Yongjin Lu +1 位作者 Lixian Xu Liang Wang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期118-126,共9页
In order to realize the small error attitude transformation of a free floating space robot,a new method of three degrees of freedom( DOF) attitude transformation was proposed for the space robot using a bionic joint... In order to realize the small error attitude transformation of a free floating space robot,a new method of three degrees of freedom( DOF) attitude transformation was proposed for the space robot using a bionic joint. A general kinematic model of the space robot was established based on the law of linear and angular momentum conservation. A combinational joint model was established combined with bionic joint and closed motion. The attitude transformation of planar,two DOF and three DOF is analyzed and simulated by the model,and it is verified that the feasibility of attitude transformation in three DOF space. Finally,the specific scheme of disturbance elimination in attitude transformation is presented and simulation results are obtained.Therefore,the range of application field of the bionic joint model has been expanded. 展开更多
关键词 double rigid bodies model bionic mechanism closed motion attitude transformation eliminating disturbance
下载PDF
Development of a Leg Mechanism for Soft Landing Based on Biological Motion
6
作者 KIMURA Hitoshi OTAKI Yoshihiko +1 位作者 ITO Shusaku INOU Norio 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期731-737,共7页
With jumping mechanisms,soft landing motion is important to protect loads and the mechanisms.This study proposes a leg mechanism for soft landing based on biological motion.Human jumping motion with a load suggests a ... With jumping mechanisms,soft landing motion is important to protect loads and the mechanisms.This study proposes a leg mechanism for soft landing based on biological motion.Human jumping motion with a load suggests a unique motion for soft landing.The landing model consists of two periods.Jerk is minimized in the first period and force is minimized in the second period.In comparison with other landing models,this model is specialized for soft landing motion protecting an objective part.Given all mechanisms have mass,such model is useful in practical application.For the purpose of realizing soft landing motion,this study proposes a new leg mechanism.The mechanism achieves quick variable transmission with cam and wire.Design process of the cam is explained with dynamics and computation.With the calculated cam shape,the leg mechanism can be driven by constant input voltage for simple control.Robustness against height change is also verified with landing simulation.With 50mm falling experiment,prototype leg mechanism performed soft landing without bounce motion and large sound.The acceleration profile of the body also agrees with the proposed soft landing model. 展开更多
关键词 soft landing biological motion leg mechanism cam and wire mechanism
下载PDF
THE EQUATIONS OF MOTION OF A MECHANICAL SYSTEM IN MATRIX FORM
7
作者 R.G.Moukharliamov 刘慰俭 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第10期947-954,共8页
This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in ves... This work recommends methods of construction of equations of motion of mechanical systems in matrix form. The use of a matrix form allows one to write an equation of dynamics in compact form, convenient for the in vestigation of multidimensional mechanical systems with the help of computers. Use is made of different methods of constructing equations of motion, based on the basic laws of dynamics as well as on the principles of D Alambert-Le range, Hamilton-Ostrogradski and Gauss. 展开更多
关键词 THE EQUATIONS OF motion OF A MECHANICAL SYSTEM IN MATRIX FORM
下载PDF
Development of ICPF Actuated Underwater Microrobots 被引量:4
8
作者 Xiu-Fen Ye,Bao-Feng Gao Automation College, Harbin Engineering University, Harbin 150001, PRC Shu-Xiang Guo Automation College, Harbin Engineering University, Harbin 150001, PRC Faculty of Engineering, Kagawa University, Takamatsu 761-0396, Japan Li-Quan Wang College of Mechanical Electrical Engineering, Harbin Engineering University, Harbin 150001, PRC 《International Journal of Automation and computing》 EI 2006年第4期382-391,共10页
It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure s... It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure should be simple and it can be driven by low voltage and produces no pollution or noise. The low actuating voltage and quick bending responses of Ionic Conducting Polymer Film (ICPF) are considered very useful and attractive for constructing various types of actuators and sensors. In this paper, we will first study the characteristics of the ICPF actuator used in underwater microrobot to realize swimming and walking. Then, we propose a new prototype model of underwater swimming microrobot utilizing only one piece of ICPF as the servo actuator. Through theoretic analysis, the motion mechanism of the microrobot is illustrated. It can swim forward and vertically. The relationships between moving speed and signal voltage amplitude and signal frequency is obtained after experimental study. Lastly, we present a novel underwater crab-like walking microrobot named crabliker-1. It has eight legs, and each leg is made up of two pieces of ICPF. Three sample processes of the octopod gait are proposed with a new analyzing method. The experimental results indicate that the crab-like underwater microrobot can perform transverse and rotation movement when the legs of the crab collaborate. 展开更多
关键词 Underwater microrobot Ionic Conducting Polymer Film (ICPF) actuator motion mechanism GAIT
下载PDF
Numerical Simulation of PMM Tests for A Ship in Close Proximity to Sidewall and Maneuvering Stability Analysis 被引量:1
9
作者 刘晗 马宁 顾解忡 《China Ocean Engineering》 SCIE EI CSCD 2016年第6期884-897,共14页
As the maneuverability of a ship navigating close to a bank is influenced by the sidewall, the assessment of ship maneuvering stability is important. The hydrodynamic derivatives measured by the planar motion mechani... As the maneuverability of a ship navigating close to a bank is influenced by the sidewall, the assessment of ship maneuvering stability is important. The hydrodynamic derivatives measured by the planar motion mechanism (PMM) test provide a way to predict the change of ship maneuverability. This paper presents a numerical simulation of PMM model tests with variant distances to a vertical bank by using unsteady RANS equations. A hybrid dynamic mesh technique is developed to realize the mesh configuration and remeshing of dynamic PMM tests when the ship is close to the bank. The proposed method is validated by comparing numerical results with results of PMM tests in a circulating water channel. The first-order hydrodynamic derivatives of the ship are analyzed from the time history of lateral force and yaw moment according to the multiple-run simulating procedure and the variations of hydrodynamic derivatives with the ship-sidewall distance are given. The straight line stability and directional stability are also discussed and stable or unstable zone of proportional-derivative (PD) controller parameters for directional stability is shown, which can be a reference for course keeping operation when sailing near a bank. 展开更多
关键词 sidewall effect numerical simulation planar motion mechanism (PMM) hybrid dynamic mesh technique ship maneuvering stability
下载PDF
Enhanced performance of triboelectric mechanical motion sensor via continuous charge supplement and adaptive signal processing
10
作者 Zitang Yuan Xiaosong Zhang +4 位作者 Hengyu Li Ping Shen Jianming Wen Zhong Lin Wang Tinghai Cheng 《Nano Research》 SCIE EI CSCD 2023年第7期10263-10271,共9页
The development of automation industry is inseparable from the progress of sensing technology.As a promising self-powered sensing technology,the durability and stability of triboelectric sensor(TES)have always been in... The development of automation industry is inseparable from the progress of sensing technology.As a promising self-powered sensing technology,the durability and stability of triboelectric sensor(TES)have always been inevitable challenges.Herein,a continuous charge supplement(CCS)strategy and an adaptive signal processing(ASP)method are proposed to improve the lifetime and robustness of TES.The CCS uses low friction brushes to increase the surface charge density of the dielectric,ensuring the reliability of sensing.A triboelectric mechanical motion sensor(TMMS)with CCS is designed,and its electrical signal is hardly attenuated after 1.5 million cycles after reasonable parameter optimization,which is unprecedented in linear TESs.After that,the dynamic characteristics of the CCS-TMMS are analyzed with error rates of less than 1%and 2%for displacement and velocity,respectively,and a signal-to-noise ratio of more than 35 dB.Also,the ASP used a signal conditioning circuit for impedance matching and analog-to-digital conversion to achieve a stable output of digital signals,while the integrated design and manufacture of each hardware module is achieved.Finally,an intelligent logistics transmission system(ILTS)capable of wirelessly monitoring multiple motion parameters is developed.This work is expected to contribute to automation industries such as smart factories and unmanned warehousing. 展开更多
关键词 triboelectric mechanical motion sensor continuous charge supplement adaptive signal processing durability and stability multiple motion parameters monitoring
原文传递
Dynamic Model and Motion Mechanism of Magnetotactic Bacteria with Two Lateral Flagellar Bundles 被引量:4
11
作者 Cenyu Yang Chuanfang Chen +2 位作者 Qiufeng Ma Longfei Wu Tao Song 《Journal of Bionic Engineering》 SCIE EI CSCD 2012年第2期200-210,共11页
Magnetotactic Bacteria (MTB) propel themselves by rotating their flagella and swim along the magnetic field lines. To analyze the motion of MTB, MTB magneto-ovoid strain MO-1 cells, each with two bundles of flagella... Magnetotactic Bacteria (MTB) propel themselves by rotating their flagella and swim along the magnetic field lines. To analyze the motion of MTB, MTB magneto-ovoid strain MO-1 cells, each with two bundles of flagella, were taken as research object. The six-degrees-of-freedom (6-DoF) dynamic model of MO-1 was established based on the Newton-Euler dynamic equations. In particular, the interaction between the flagellum and fluid was considered by the resistive force theory. The simulated motion trajectory of MTB was found to consist of two kinds of helices: small helices restilting from the imbalance of force due to flagellar rotation, and large helices arising from the different directions of the rotation axis of the cell body and the propulsion axis of the flagellum. The motion behaviours of MTB in various magnetic fields were studied, and the simulation results agree well with the experiment results. In addition, the rotation frequency of the flagella was estimated at 1100 Hz, which is consistent with the average rotation rate for Na^+-driven flagellar motors. The included angle of the magnetosome chain was predicted at 40° that is located within 20° to 60° range of the observed results. The results indicate the correctness of the dynamic model, which may aid research on the operation and control of MTB-propelled micro-actuators. Meanwhile, the motion behaviours of MTB may inspire the development of micro-robots with new driving mechanisms. 展开更多
关键词 magnetotactic bacteria dynamic model resistive force theory motion mechanism
原文传递
Mechanism analysis of cheetah’s high-speed locomotion based on digital reconstruction 被引量:1
12
作者 Xiuli Zhang Chenliang Zhao +1 位作者 Zhongqi Xu Senwei Huang 《Biomimetic Intelligence & Robotics》 2022年第1期37-48,共12页
As the fastest land animal,cheetah has important reference significance for the research of high-speed quadruped robots in terms of its body structure,motion characteristics and control mechanism.In this paper,we used... As the fastest land animal,cheetah has important reference significance for the research of high-speed quadruped robots in terms of its body structure,motion characteristics and control mechanism.In this paper,we used digital reconstruction to analyze the mechanism of the cheetah’s high-speed movement.Considering the body size and quality of a real cheetah,a simplified virtual model of cheetah was built.Using the D-H method,the kinematics and dynamics of the cheetah’s leg mechanism were established.By using the foot trajectory data of the cheetah’s running gait obtained from biological research,each joint angle,virtual leg length,leg-to-ground contact angle,leg energy,joint torque,and the manipulability of the leg mechanism were analyzed and compared in the time dimension.Finally,the high-speed motion law of engineering guiding significance was extracted. 展开更多
关键词 Biomimetics Cheetah-like robot motion mechanism Digital reconstruction
原文传递
A cobalt redox switch driving alcohol dehydrogenation by redox coupled molecular swing
13
作者 Guoling Li Yang Liu +2 位作者 Wei Wang Zhu Zhuo Yougui Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期459-462,共4页
Developing redox switches that not only perform specific mechanical movements but also drive important chemical reactions is important but a great challenge.Herein,we report a redox pair of cobalt species(Co^(Ⅲ)/Co^(... Developing redox switches that not only perform specific mechanical movements but also drive important chemical reactions is important but a great challenge.Herein,we report a redox pair of cobalt species(Co^(Ⅲ)/Co^(Ⅱ))that switches through photo-dehydrogenation of alcohol and hydrogenation of azo-ligand.The cobalt species is equipped with a flexible azo-ligand containing two bulky planar substituents.A planar oxidated sate(Co^(Ⅲ)species)can be photo-reduced to a saddle-like reduced state(Co^(Ⅱ))with alcohol molecules as electron donors,and in turn the Co^(Ⅲ)species can be recovered with azo-ligand as oxidant under acidic surrounding.Both the redox states of the pair are isolated and characterized by single crystal X-ray diffraction.In the switching cycle,alcohol is oxidized to aldehyde by azo-ligand through proton coupled electron transfer and the cobalt complex acts as a redox catalyst.These results provide important insights into alcohol dehydrogenation catalyzed by redox complexes. 展开更多
关键词 Redox switch Alcohol dehydrogenation Azo-ligand hydrogenation Cobalt complex Mechanical motion
原文传递
NUMERICAL PREDICTION OF SUBMARINE HYDRODYNAMIC COEFFI-CIENTS USING CFD SIMULATION 被引量:22
14
作者 PAN Yu-cun ZHANG Huai-xin ZHOU Qi-dou 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第6期840-847,共8页
The submarine Hydrodynamic coefficients are predicted by numerical simulations. Steady and unsteady Reynolds Averaged Navier-Stokes (RANS) simulations are carried out to numerically simulate the oblique towing exper... The submarine Hydrodynamic coefficients are predicted by numerical simulations. Steady and unsteady Reynolds Averaged Navier-Stokes (RANS) simulations are carried out to numerically simulate the oblique towing experiment and the Planar Motion Mechanism (PMM) experiment performed on the SUBOFF submarine model. The dynamic mesh method is adopted to simulate the maneuvering motions of pure heaving, pure swaying, pure pitching and pure yawing. The hydrodynamic forces and moments acting on the maneuvering submarine are obtained. Consequently, by analyzing these results, the hydrodynamic coefficients of the submarine maneuvering motions can be determined. The computational results are verified by comparison with experimental data, which show that this method can be used to estimate the hydrodynamic derivatives of a fully appended submarine. 展开更多
关键词 submarine maneuverability hydrodynamic coefficients Planar motion Mechanism (PMM) dynamic mesh
原文传递
OBLIQUE TOWING TEST AND MANEUVER SIMULATION AT LOW SPEED AND LARGE DRIFT ANGLE FOR DEEP SEA OPEN-FRAMED REMOTELY OPERATED VEHICLE 被引量:5
15
作者 FAN Shi-bo LIAN Lian +1 位作者 REN Ping HUANG Guo-liang 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第2期280-286,共7页
This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV),which is being researched and developed by Sh... This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement is significant for the maneuverability and control system design.The scaled model of ROV was constructed by 1:1.6.Hydrodynamics tests of large drift angle were conducted through Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM) under low speed.Multiple regression method is adopted to process the test data and obtain the related hydrodynamic coefficients.Simulations were designed for the horizontal plane motion of large drift angle to verify the coefficients calculated.And the results show that the data can satisfy with the design requirements of the ROV developed. 展开更多
关键词 Remotely Operated Vehicle (ROV) scaled model large drift angle multiple regression Large Amplitude Horizontal Planar motion Mechanism (LAHPMM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部