Mooring arrays have been widely deployed in sustained ocean observation in high resolution to measure finer dynamic features of marine phenomena.However,the irregular posture changes and nonlinear response of moorings...Mooring arrays have been widely deployed in sustained ocean observation in high resolution to measure finer dynamic features of marine phenomena.However,the irregular posture changes and nonlinear response of moorings under the effect of ocean currents face huge challenges for the deployment of mooring arrays,which may cause the deviations of measurements and yield a vacuum of observation in the upper ocean.We developed a data-driven mooring simulation model based on LSTM(long short-term memory)neural network,coupling the ocean current with position data from moorings to predict the motion of moorings,including single-step output prediction and multi-step prediction.Based on the predictive information,the formation of the mooring array can be adjusted to improve the accuracy and integrity of measurements.Moreover,we proposed the cuckoo search(CS)optimization algorithm to tune the parameters of LSTM,which improves the robustness and generalization of the model.We utilize the datasets observed from moorings anchored in the Kuroshio Extension region to train and validate the simulation model.The experimental results demonstrate that the model can remarkably improve prediction accuracy and yield stable performance.Moreover,compared with other optimization algorithms,CS is more efficient and performs better in simulating the motion of moorings.展开更多
Unmanned vehicle has attracted wide attention and interests throughout the world since it first deputed in the 1960s. However, the experimental methods for unmanned vehicle's intelligent behavior, such as semi-physic...Unmanned vehicle has attracted wide attention and interests throughout the world since it first deputed in the 1960s. However, the experimental methods for unmanned vehicle's intelligent behavior, such as semi-physical simulation and motion subsystem, have not been widely explored. First, the requirements of the motion subsystem in unmanned vehicle semi-physical facility are analyzed, and a six DOF parallel manipulator is selected to reproduce the pose of the vehicle. The link lengths of the motion subsystem are worked out under the given rotational angles of the vehicle. According to the geometric properties of tetrahedron, three joint positions of the top platform are determined, and the rest are obtained from the first three position vectors. Six constraint equations are set up based on the vertices on the top platform and the link lengths. In order to solve the six angle variables, a numerical algorithm built on the Newton-Raphson iterative method is presented, which is based on Taylor series expansion of six constraint equations. The pose of the top platform is ultimately calculated. The eigenvalues of the top platform are solved to obtain the natural frequencies of the motion subsystem. The coordinates of six joint centers on the top platform and six constraint equations can be realized by simple algebraic manipulation, which allows significant abbreviation in the formulation and provides a systematic way of obtaining the kinematic solution of the parallel manipulator. A numerical example is given and its efficacy is demonstrated by the inverse kinematics. The computation strategy based on tetrahedron method and Newton-Raphson iterative method provide a simple and cost-effective method for solving forward kinematics of six DOF parallel manipulators, and this method sheds light on other parallel manipulators.展开更多
Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary jo...Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible.展开更多
The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable...The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable harness design is presented.The model,based on continuum mechanics,is established by analyzing the force of microelement in equilibrium.During the analysis procedure,three coordinate systems:inertial,Frenet and main-axis coordinate systems are used.By variable substitution and dimensionless processing,the equation set is discretized by differential quadrature method and subsequently becomes an overdetermined nonlinear equation set with boundary conditions solved by Levenberg-Marquardt method.With the profile of motional cable harness obtained from the integral of arithmetic solution,a motion simulation system based on"path"and"profile"as well as the experimental equipments is built.Using the same parameters as input for the simulation and the real cable harness correspondingly,the issue in designing,such as collision,can be easily found by the simulation system.This research obtains a better result which has no potential collisions by redesign,and the proposed method can be used as an accurate and efficient way in motional cable harness design work.展开更多
A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the ...A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the wave-passage effect and the site-response effect, are taken into account, and corresponding terms/parameters are incorporated into the well known model of uniform ground motions. Some of these terms/parameters can be determined by the root operation, and others can be calculated directly. The proposed model is first verified theoretically, and examples of ground motion simulations are provided as a further illustration. It is proven that the ensemble expected value and the ensemble auto-/cross-spectral density functions of the simulated ground motions are identical to the target spectral density functions. The proposed model can also be used to simulate other correlated stochastic processes, such as wave and wind loads.展开更多
This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimens...This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures.展开更多
The motional payloads on stabilized platform must be linked by some cable harnesses with other immobile apparatus.During the operation of stabilized platform,these cable harnesses can create spring disturbance torque ...The motional payloads on stabilized platform must be linked by some cable harnesses with other immobile apparatus.During the operation of stabilized platform,these cable harnesses can create spring disturbance torque which is exerted on the stabilized platform and then reduce the stabilizing precision.None of current studies can deal with the spring disturbance torque problem.To analyze the spring disturbance toque,a dynamic thin rod model is presented for simulating the motional cable harness which is based on the Kirchhoff rod theorem and can consider the geometrically non-linear effects.The internal bending and torsion restoring torques are simulated and then a predictive analysis of the disturbance torque can be performed in motional cable routing design.This model is solved with differential quadrature method(DQM).By using zeros of the Chebyshev polynomial as the grid points,the arc-coordinate is discretized to obtain a set of ordinary differential equations in time domain which is solved by implied method to obtain the profile and internal force of cable harness.The accuracy of this model is validated by comparing the simulation results and the experiment results(both the spring force and the deformed profile of the motional cable harness).In the experiment,a special optical measuring instrument based on binocular vision is developed.The comparison of experimental and simulated results shows that the simulation model can represent the real motional cable harness well,and the spring disturbance force simulation results are precise enough for spring disturbance torque analysis.This study will be helpful to obtain an optimized motional cable harness layout design with small spring disturbance torque.展开更多
The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the ef...The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the efficiency of the simulation. The accuracy of the approximation approach may be affected by three factors: matrix for decomposition, distribution of frequency interpolation nodes and elements for interpolation. The influence of these factors on the accuracy of this approach is examined and the following conclusions are drawn. The SRM based on the root decomposition of the lagged coherency matrix exhibits greater accuracy than the SRM based on the root decomposition of the cross spectral matrix. The equal energy distribution of frequency interpolation nodes proposed in this study is more effective than the counter pith with an equal spacing. Elements for interpolation do not have much of an effect on the accuracy, so interpolation of the elements of the decomposed matrix is recommended because it is less complicated from a computational efficiency perspective.展开更多
Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investig...Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investigate the hydrodynamic responses of three barges moored side-by-side in a floatover operation in the frequency and time domains. In the frequency domain, the damping lid method is adopted to improve the overestimated hydrodynamic coefficients calculated from conventional potential flow theory. A time-domain computing program based on potential flow theory and impulse theory is compiled for analyses that consider multibody hydrodynamic interactions and mechanical effects from lines and fenders. Correspondingly, an experiment is carried out for comparison with the numerical results. All statistics, time series, and power density spectra from decay and irregular wave tests are in a fairly good agreement.展开更多
The motion simulation of arc welding robot is the basis of the system of robot off-line programming, and it has been one of the important research directions. The UGNX 4. 0 is adopted to establish 3D simulating model ...The motion simulation of arc welding robot is the basis of the system of robot off-line programming, and it has been one of the important research directions. The UGNX 4. 0 is adopted to establish 3D simulating model of MOTOMAN-HP6 arc welding robot. The kinematic model under link-pole coordinate system is established by the second development function offered by UG/OPEN API and the method of programming using VC ++ 6. 0. The methods of founding model and operational procedures are introduced, which provides a good basis for off-line programming technique under Unigraphies condition.展开更多
In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element metho...In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element method combined with a multi-transmitting formula (MTF) of an artificial boundary. Prior to the comparison, verification of the explicit element method and the MTF is conducted. The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane. The maximum final dislocation occurs on the fault upper line for the SRF; however, for the BE the maximum final dislocation is located on the fault central part. Meanwhile, the PGA, PGV and PGD of long period ground motions (≤ 1 Hz) generated by the SRF are much higher than those of the BF in the near-fault region. The peak value of the velocity pulse generated by the SRF is also higher than the BE Furthermore, it is found that in a very narrow region along the fault trace, ground motions caused by the SRF are much higher than by the BF. These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults.展开更多
In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flock...In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flocking behavior,such as segregation,alignment and cohesion,and proposes a method for crowd motion simulation based on the Boids model and social force model.Firstly,the perception area of individuals is divided into zone of segregation,alignment and cohesion.Secondly,the interactive force among individuals is calculated based upon the zone information,velocity vector and the group information.The interactive force among individuals is the synthesis of three forces:the repulsion force to avoid collisions,the alignment force to keep consistent with the velocity direction,and the attractive force to get close to the members of group.In segregation and alignment areas,the repulsion force and alignment force among pedestrians are limited by visual field factors.Finally,the interactive force among individuals,the driving force of destination and the repulsion force of obstacles work together to drive the behavior of crowd motion.The simulation results show that the proposed method can not only effectively simulate the interactive behavior between adjacent individuals but also the collective behavior of group.展开更多
A new 6-DOF micro-manipulation robot based on 3-PPTTRS parallel mechanisms in combination with flexure hinges is proposed. The design principle of the mechanism is introduced, and the kinematics analysis method based ...A new 6-DOF micro-manipulation robot based on 3-PPTTRS parallel mechanisms in combination with flexure hinges is proposed. The design principle of the mechanism is introduced, and the kinematics analysis method based on differentiation is used to get the (inverse) kinematics equations. Then a micro-scale motion precision simulation method is proposed according to finite element analysis (FEA), and the prediction of robot’s motion precision in design phase is realized. The simulation result indicates that the 6-DOF micro-manipulation robot can meet the design specification.展开更多
A novel approach is introduced to generate simulated ground motion records by considering spectral acceleration correlations at multiple periods. Most of the current reliable Ground Motion Record(GMR) simulation proce...A novel approach is introduced to generate simulated ground motion records by considering spectral acceleration correlations at multiple periods. Most of the current reliable Ground Motion Record(GMR) simulation procedures use a seismological model including source, path and site characteristics. However, the response spectrum of simulated GMR is somewhat different when compared with the response spectrum based on recorded GMRs. More specifi cally, the correlation between the spectral values at multiple periods is a characteristic of a record which is usually different between simulated and recorded GMRs. As this correlation has a signifi cant infl uence on the structural response, it is needed to investigate the consistency of the simulated ground motions with actual records. This issue has been investigated in this study by incorporating an optimization algorithm within the Boore simulation technique. Eight seismological key parameters were optimized in order to achieve approximately the same correlation coeffi cients and spectral acceleration between two sets of real and simulated records. The results show that the acceleration response spectra of the synthetic ground motions also have good agreement with the real recorded response spectra by implementation of the proposed optimized values.展开更多
Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and densit...Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.展开更多
In order to validate the simulation model and develop heave compensation control strategy,heave compensation model tests were performed.The model test installation includes themining ship motion simulator,the heave co...In order to validate the simulation model and develop heave compensation control strategy,heave compensation model tests were performed.The model test installation includes themining ship motion simulator,the heave compensation system,the lifting pipe simulator,the buffer simulator and the water pool.The tests ofmining ship motion simulator show that it is able to perform under the predetermined attitude path smoothly and can meet the requirements of themining ship motions.The heave compensation effect is more than 60% under random wave and the goal is set to be 50%.The model test results indicate that this heave compensation system is effective and feasible.展开更多
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical...Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.展开更多
Topographic effect study is a very important research topic in seismology, seismic engineering,earthquake engineering, engineering earthquake construction and engineering seismology. This paper focuses on its present ...Topographic effect study is a very important research topic in seismology, seismic engineering,earthquake engineering, engineering earthquake construction and engineering seismology. This paper focuses on its present development status. Post-earthquake investigation has found that the existence of topography caused more serious earthquake damage. The actual seismographs also recorded the topographic amplification effect of 6 to 7 times and even more than 10 times. Numerical simulation is an important technique to study topographic effect, which complements the lack of observed records. However researches on 3-D topographic effect are not enough and need to be studied deeper. To find the main influence factors and the quantitative relationship between topography and ground motion are required very urgently. Obviously the achievements not only can be applied in the earthquake resistant design, but also can provide the quantitative pre-earthquake disaster prediction and quantitative post-earthquake disaster evaluation.展开更多
To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster an...To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.展开更多
The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure mode...The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.展开更多
基金Supported by the Laoshan Laboratory (Nos.LSKJ202201302-5,LSKJ202201405-1,LSKJ202204304)。
文摘Mooring arrays have been widely deployed in sustained ocean observation in high resolution to measure finer dynamic features of marine phenomena.However,the irregular posture changes and nonlinear response of moorings under the effect of ocean currents face huge challenges for the deployment of mooring arrays,which may cause the deviations of measurements and yield a vacuum of observation in the upper ocean.We developed a data-driven mooring simulation model based on LSTM(long short-term memory)neural network,coupling the ocean current with position data from moorings to predict the motion of moorings,including single-step output prediction and multi-step prediction.Based on the predictive information,the formation of the mooring array can be adjusted to improve the accuracy and integrity of measurements.Moreover,we proposed the cuckoo search(CS)optimization algorithm to tune the parameters of LSTM,which improves the robustness and generalization of the model.We utilize the datasets observed from moorings anchored in the Kuroshio Extension region to train and validate the simulation model.The experimental results demonstrate that the model can remarkably improve prediction accuracy and yield stable performance.Moreover,compared with other optimization algorithms,CS is more efficient and performs better in simulating the motion of moorings.
基金supported by National Natural Science Foundation of China (Grant No. 50908222)
文摘Unmanned vehicle has attracted wide attention and interests throughout the world since it first deputed in the 1960s. However, the experimental methods for unmanned vehicle's intelligent behavior, such as semi-physical simulation and motion subsystem, have not been widely explored. First, the requirements of the motion subsystem in unmanned vehicle semi-physical facility are analyzed, and a six DOF parallel manipulator is selected to reproduce the pose of the vehicle. The link lengths of the motion subsystem are worked out under the given rotational angles of the vehicle. According to the geometric properties of tetrahedron, three joint positions of the top platform are determined, and the rest are obtained from the first three position vectors. Six constraint equations are set up based on the vertices on the top platform and the link lengths. In order to solve the six angle variables, a numerical algorithm built on the Newton-Raphson iterative method is presented, which is based on Taylor series expansion of six constraint equations. The pose of the top platform is ultimately calculated. The eigenvalues of the top platform are solved to obtain the natural frequencies of the motion subsystem. The coordinates of six joint centers on the top platform and six constraint equations can be realized by simple algebraic manipulation, which allows significant abbreviation in the formulation and provides a systematic way of obtaining the kinematic solution of the parallel manipulator. A numerical example is given and its efficacy is demonstrated by the inverse kinematics. The computation strategy based on tetrahedron method and Newton-Raphson iterative method provide a simple and cost-effective method for solving forward kinematics of six DOF parallel manipulators, and this method sheds light on other parallel manipulators.
文摘Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible.
基金Supported by National Natural Science Foundation of China(Grant No.51275047)
文摘The design work of motional cable in products is vital due to the difficulty in estimating the potential issues in current researches.In this paper,a physics-based modeling and simulation method for the motional cable harness design is presented.The model,based on continuum mechanics,is established by analyzing the force of microelement in equilibrium.During the analysis procedure,three coordinate systems:inertial,Frenet and main-axis coordinate systems are used.By variable substitution and dimensionless processing,the equation set is discretized by differential quadrature method and subsequently becomes an overdetermined nonlinear equation set with boundary conditions solved by Levenberg-Marquardt method.With the profile of motional cable harness obtained from the integral of arithmetic solution,a motion simulation system based on"path"and"profile"as well as the experimental equipments is built.Using the same parameters as input for the simulation and the real cable harness correspondingly,the issue in designing,such as collision,can be easily found by the simulation system.This research obtains a better result which has no potential collisions by redesign,and the proposed method can be used as an accurate and efficient way in motional cable harness design work.
基金National Natural Science Foundation of China Under Grant No.90815020 and No.50639010
文摘A new model to simulate spatially correlated earthquake ground motions is developed. In the model, the main factors that characterize three distinct effects of spatial variability, namely, the incoherency effect, the wave-passage effect and the site-response effect, are taken into account, and corresponding terms/parameters are incorporated into the well known model of uniform ground motions. Some of these terms/parameters can be determined by the root operation, and others can be calculated directly. The proposed model is first verified theoretically, and examples of ground motion simulations are provided as a further illustration. It is proven that the ensemble expected value and the ensemble auto-/cross-spectral density functions of the simulated ground motions are identical to the target spectral density functions. The proposed model can also be used to simulate other correlated stochastic processes, such as wave and wind loads.
基金National Key R&D Program of China under Grant No.2016YFC0701108the State Key Program of National Natural Science Foundation of China under Grant No.51738007
文摘This paper presents a novel approach to model and simulate the multi-support depth-varying seismic motions(MDSMs) within heterogeneous offshore and onshore sites.Based on 1 D wave propagation theory,the three-dimensional ground motion transfer functions on the surface or within an offshore or onshore site are derived by considering the effects of seawater and porous soils on the propagation of seismic P waves.Moreover,the depth-varying and spatial variation properties of seismic ground motions are considered in the ground motion simulation.Using the obtained transfer functions at any locations within a site,the offshore or onshore depth-varying seismic motions are stochastically simulated based on the spectral representation method(SRM).The traditional approaches for simulating spatially varying ground motions are improved and extended to generate MDSMs within multiple offshore and onshore sites.The simulation results show that the PSD functions and coherency losses of the generated MDSMs are compatible with respective target values,which fully validates the effectiveness of the proposed simulation method.The synthesized MDSMs can provide strong support for the precise seismic response prediction and performance-based design of both offshore and onshore large-span engineering structures.
基金supported by National Natural Science Foundation of China (Grant No. 50805009)
文摘The motional payloads on stabilized platform must be linked by some cable harnesses with other immobile apparatus.During the operation of stabilized platform,these cable harnesses can create spring disturbance torque which is exerted on the stabilized platform and then reduce the stabilizing precision.None of current studies can deal with the spring disturbance torque problem.To analyze the spring disturbance toque,a dynamic thin rod model is presented for simulating the motional cable harness which is based on the Kirchhoff rod theorem and can consider the geometrically non-linear effects.The internal bending and torsion restoring torques are simulated and then a predictive analysis of the disturbance torque can be performed in motional cable routing design.This model is solved with differential quadrature method(DQM).By using zeros of the Chebyshev polynomial as the grid points,the arc-coordinate is discretized to obtain a set of ordinary differential equations in time domain which is solved by implied method to obtain the profile and internal force of cable harness.The accuracy of this model is validated by comparing the simulation results and the experiment results(both the spring force and the deformed profile of the motional cable harness).In the experiment,a special optical measuring instrument based on binocular vision is developed.The comparison of experimental and simulated results shows that the simulation model can represent the real motional cable harness well,and the spring disturbance force simulation results are precise enough for spring disturbance torque analysis.This study will be helpful to obtain an optimized motional cable harness layout design with small spring disturbance torque.
基金National Natural Science Foundation of China under Grant No.51308191 and Grant No.51278382the Fundamental Research Funds for the Central Universities of China under Grant No.2013B01514+1 种基金the Chang Jiang Scholars Program and the Innovative Research Team Program of the Ministry of Education of China under Grant No.IRT1125the 111 Project(No.B13024)
文摘The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the efficiency of the simulation. The accuracy of the approximation approach may be affected by three factors: matrix for decomposition, distribution of frequency interpolation nodes and elements for interpolation. The influence of these factors on the accuracy of this approach is examined and the following conclusions are drawn. The SRM based on the root decomposition of the lagged coherency matrix exhibits greater accuracy than the SRM based on the root decomposition of the cross spectral matrix. The equal energy distribution of frequency interpolation nodes proposed in this study is more effective than the counter pith with an equal spacing. Elements for interpolation do not have much of an effect on the accuracy, so interpolation of the elements of the decomposed matrix is recommended because it is less complicated from a computational efficiency perspective.
基金financially supported by Lloyd’s Register Foundation(LRF),a UK-registered charity and sole shareholder of Lloyd’s Register Group Ltd.the Youth Innovation Fund of State Key Laboratory of Ocean Engineering(Grant No.GKZD010059-21)
文摘Simulating the coupled motions of multiple bodies in the time domain is a complex problem because of the strong hydrodynamic interactions and coupled effect of various mechanical connectors. In this study, we investigate the hydrodynamic responses of three barges moored side-by-side in a floatover operation in the frequency and time domains. In the frequency domain, the damping lid method is adopted to improve the overestimated hydrodynamic coefficients calculated from conventional potential flow theory. A time-domain computing program based on potential flow theory and impulse theory is compiled for analyses that consider multibody hydrodynamic interactions and mechanical effects from lines and fenders. Correspondingly, an experiment is carried out for comparison with the numerical results. All statistics, time series, and power density spectra from decay and irregular wave tests are in a fairly good agreement.
基金Natural Science Foundation of Tianjin(No.07JCYBJC04400).
文摘The motion simulation of arc welding robot is the basis of the system of robot off-line programming, and it has been one of the important research directions. The UGNX 4. 0 is adopted to establish 3D simulating model of MOTOMAN-HP6 arc welding robot. The kinematic model under link-pole coordinate system is established by the second development function offered by UG/OPEN API and the method of programming using VC ++ 6. 0. The methods of founding model and operational procedures are introduced, which provides a good basis for off-line programming technique under Unigraphies condition.
基金National Natural Science Foundation of China Under Grant No. 50408003National Scientifi c and Technical Supporting Programs Funded by Ministry of Science & Technology of China Under Grant No. 2006BAC13B01
文摘In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element method combined with a multi-transmitting formula (MTF) of an artificial boundary. Prior to the comparison, verification of the explicit element method and the MTF is conducted. The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane. The maximum final dislocation occurs on the fault upper line for the SRF; however, for the BE the maximum final dislocation is located on the fault central part. Meanwhile, the PGA, PGV and PGD of long period ground motions (≤ 1 Hz) generated by the SRF are much higher than those of the BF in the near-fault region. The peak value of the velocity pulse generated by the SRF is also higher than the BE Furthermore, it is found that in a very narrow region along the fault trace, ground motions caused by the SRF are much higher than by the BF. These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults.
文摘In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flocking behavior,such as segregation,alignment and cohesion,and proposes a method for crowd motion simulation based on the Boids model and social force model.Firstly,the perception area of individuals is divided into zone of segregation,alignment and cohesion.Secondly,the interactive force among individuals is calculated based upon the zone information,velocity vector and the group information.The interactive force among individuals is the synthesis of three forces:the repulsion force to avoid collisions,the alignment force to keep consistent with the velocity direction,and the attractive force to get close to the members of group.In segregation and alignment areas,the repulsion force and alignment force among pedestrians are limited by visual field factors.Finally,the interactive force among individuals,the driving force of destination and the repulsion force of obstacles work together to drive the behavior of crowd motion.The simulation results show that the proposed method can not only effectively simulate the interactive behavior between adjacent individuals but also the collective behavior of group.
基金the Research Fund for the Doctoral Programof Higher Education(20060007023)
文摘A new 6-DOF micro-manipulation robot based on 3-PPTTRS parallel mechanisms in combination with flexure hinges is proposed. The design principle of the mechanism is introduced, and the kinematics analysis method based on differentiation is used to get the (inverse) kinematics equations. Then a micro-scale motion precision simulation method is proposed according to finite element analysis (FEA), and the prediction of robot’s motion precision in design phase is realized. The simulation result indicates that the 6-DOF micro-manipulation robot can meet the design specification.
文摘A novel approach is introduced to generate simulated ground motion records by considering spectral acceleration correlations at multiple periods. Most of the current reliable Ground Motion Record(GMR) simulation procedures use a seismological model including source, path and site characteristics. However, the response spectrum of simulated GMR is somewhat different when compared with the response spectrum based on recorded GMRs. More specifi cally, the correlation between the spectral values at multiple periods is a characteristic of a record which is usually different between simulated and recorded GMRs. As this correlation has a signifi cant infl uence on the structural response, it is needed to investigate the consistency of the simulated ground motions with actual records. This issue has been investigated in this study by incorporating an optimization algorithm within the Boore simulation technique. Eight seismological key parameters were optimized in order to achieve approximately the same correlation coeffi cients and spectral acceleration between two sets of real and simulated records. The results show that the acceleration response spectra of the synthetic ground motions also have good agreement with the real recorded response spectra by implementation of the proposed optimized values.
基金sponsored by the key lab.program of Shaanxi Province (08JZ04)the key discipline fund for scientific research program of Baoji University of Arts and Science (ZK0796)the key discipline fund for natural geography of Shaanxi Province in Baoji University of Arts and Science
文摘Research at home and abroad shows that the simulation of ground motion using the 3D finite-difference method might be accurate and feasible. Based on related theories and methods,and using the wave velocity and density model of the crust in the Yanqing-Huailai Basin,this paper makes a simulation of ground motion at Guanting Reservoir Dam based on the scenario earthquake in the Yanqing-Huailai Basin. Comparative analysis shows that the results of 3D finite-difference simulation accord with those of the empirical formula. The parameters such as the velocity-time series of ground motion,PGV and frequency might be referred to for the analysis of seismic protection design of the dam's structure.
基金Project(50675226) supported by the National Natural Science Foundation of China Project(DYXM-115-04-02-01) supported by the Eleventh Five-Year Plan of China
文摘In order to validate the simulation model and develop heave compensation control strategy,heave compensation model tests were performed.The model test installation includes themining ship motion simulator,the heave compensation system,the lifting pipe simulator,the buffer simulator and the water pool.The tests ofmining ship motion simulator show that it is able to perform under the predetermined attitude path smoothly and can meet the requirements of themining ship motions.The heave compensation effect is more than 60% under random wave and the goal is set to be 50%.The model test results indicate that this heave compensation system is effective and feasible.
基金funded by by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant Nos.51479053 and 51137002)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)the 111 Project(Grant No.B2012032)the Specialized Research Funding for the Doctoral Program of Higher Education(Grant No.20130094110014)the Marine Renewable Energy Research Project of State Oceanic Administration(Grant No.GHME2013GC03)the Fundamental Research Funds for the Central University(Hohai University,Grant Nos.2013B31614 and 2014B04114)
文摘Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
基金supported by the National Natural Science Foundation of China (No. 41774064)
文摘Topographic effect study is a very important research topic in seismology, seismic engineering,earthquake engineering, engineering earthquake construction and engineering seismology. This paper focuses on its present development status. Post-earthquake investigation has found that the existence of topography caused more serious earthquake damage. The actual seismographs also recorded the topographic amplification effect of 6 to 7 times and even more than 10 times. Numerical simulation is an important technique to study topographic effect, which complements the lack of observed records. However researches on 3-D topographic effect are not enough and need to be studied deeper. To find the main influence factors and the quantitative relationship between topography and ground motion are required very urgently. Obviously the achievements not only can be applied in the earthquake resistant design, but also can provide the quantitative pre-earthquake disaster prediction and quantitative post-earthquake disaster evaluation.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025
文摘To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.
基金provided by the Project of National Scientific and Technical Supporting Programs Funded of China(No.2012BAB13B03)
文摘The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.