The null space of the 6-DOF gain decoupling matrix of actuators and a modified velocity feedback controller are adopted to suppress the vibration of the wafer stage during exposure.To deal with varying flexibilities a...The null space of the 6-DOF gain decoupling matrix of actuators and a modified velocity feedback controller are adopted to suppress the vibration of the wafer stage during exposure.To deal with varying flexibilities at different performance locations,the vibration controller is designed to be a time-variant linear quadratic regulator,using the conventional gain scheduling method,which could provide good vibration control for each field under exposure.This control method can guarantee the stability of the closed-loop system and will not deteriorate the rigid modes control of the wafer stage.To minimize the control spillover caused by the higher uncontrolled modes,actuator placement is optimized to minimize their controllability grammians in modal coordinates.An unconstrained rectangular plate is used to represent the fine stage of the wafer stage.Effectiveness of the proposed method is verified on the plate through a closed-loop simulation.展开更多
The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the...The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the algorithm for the data are dids by noses and vny suddnly. this lerthm is applied to the twcmedeiling of rolling and pitchng angles of ndssiles. Simulation results shoW tha the proposed algurithm is sultable forthe modelling of nodrinear systems.展开更多
This paper presented a novel tinny motion capture system for measuring bird posture based on inertial and magnetic measurement units that are made up of micromachined gyroscopes, accelerometers, and magnetometers. Mul...This paper presented a novel tinny motion capture system for measuring bird posture based on inertial and magnetic measurement units that are made up of micromachined gyroscopes, accelerometers, and magnetometers. Multiple quaternion-based extended Kalman filters were implemented to estimate the absolute orientations to achieve high accuracy.Under the guidance of ornithology experts, the extending/contracting motions and flapping cycles were recorded using the developed motion capture system, and the orientation of each bone was also analyzed. The captured flapping gesture of the Falco peregrinus is crucial to the motion database of raptors as well as the bionic design.展开更多
This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters ...This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method.展开更多
To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were establis...To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings.展开更多
Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was...Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist .展开更多
The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint s...The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint systems with variable mass are given respectively. Finally, an example is presented.展开更多
The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-orde...The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.展开更多
Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations u...Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations under infinitesimal transformations was used. Results and Conclusion The determining equaiton of the Lie symmetries for the dynamical equationS of relative motion is established.The structure quation and the form conserved quantities are obtained. An example iD illustrate the application of the result is given.展开更多
The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling contro...The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling control system,a robust adaptive cross-coupling control strategy is proposed.To restrict influences of destabilizing factors and improve both of stability and synchronous performance,the strategy forces dual axes to track the same reference model using Narendra adaptive control theory.And then,a robust parameters adaptive law is proposed.The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory.Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.展开更多
In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic eff...In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed,the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward,and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.展开更多
Although scientists have performed many studies in the Taklimakan Desert, few of them have reported the blown sand motion along the southern edge of the Taklimakan Desert Highway, which differs significantly from the ...Although scientists have performed many studies in the Taklimakan Desert, few of them have reported the blown sand motion along the southern edge of the Taklimakan Desert Highway, which differs significantly from the northern region in terms of aeolian sand geomorphology and formation environment. Based on the field ob- servation data of airflow and aeolian sand transport, continuous monitoring data of erosional and depositional processes between 14 April 2009 and 9 April 2011 and data of surface sand grains from the classical section along the southern edge of the Taklimakan Desert Highway, this paper reported the blown sand motion within the sand-control system of the highway. The main results are as follows: 1) The existing sand-control system is highly effective in preventing and controlling desertification. Wind velocities within the sand-control system were ap- proximately 33%-100% of those for the same height above the mobile sand surface. Aeolian sand fluxes were approximately 0-31.21% of those of the mobile sand surface. Sand grains inside the system, with a mean diameter of 2.89 q), were finer than those (2.15 q)) outside the system. In addition, wind velocities basically followed a loga- rithmic law, but the airflow along the classical section was mainly determined by topography and vegetation. 2) There were obvious erosional and depositional phenomena above the surface within the sand-control system, and these phenomena have very consistent patterns for all observation points in the two observed years. The total thicknesses of erosion and deposition ranged from 0.30 to 14.60 cm, with a mean value of 3.67 cm. In contrast, the deposition thicknesses were 1.90-22.10 cm, with a mean value of 7.59 cm, and the erosion thicknesses were 3.51-15.10 cm, with a mean value of 8.75 cm. The results will aid our understanding of blown sand within the sand-control system and provide a strong foundation for optimizing the sand-control system.展开更多
This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion. The necessary and sufficient conditions of conformal invariance and Lie symmetry are g...This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion. The necessary and sufficient conditions of conformal invariance and Lie symmetry are given simultaneously by the action of infinitesimal transformations. Then it obtains the conserved quantities of conformal invariance by the infinitesimal transformations. Finally an example is given to illustrate the application of the results.展开更多
The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics m...The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.展开更多
This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion par...This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion parameters are used to define the scatter of the original data. The ratio of peak ground acceleration to peak ground velocity, and peak ground velocity of the ground motion records and structural parameters such as period of vibration and lateral strength ratio are used in the proposed equations. For the development of the equations, nonlinear time history analyses of single-degree-offreedom systems are conducted. Then, the results are used in a multivariate regression procedure. The equations are verified by comparing the estimated results with the calculated results. The average error and coefficient of variation of the proposed equations are presented. The analyses results revealed that the direct use of peak ground motion parameters for the estimation of inelastic displacement ratio significantly reduced the scatter in the original data and yielded accurate results. From the comparative results it is also observed that results obtained using equations specific to peak ground velocity or peak ground acceleration to peak ground velocity ratio are similar.展开更多
The problem on the stability of motion for a generalized Birkhoffian system was studied. The disturbed equations of motion and their first approximation for the system were established. The criterion of stability of m...The problem on the stability of motion for a generalized Birkhoffian system was studied. The disturbed equations of motion and their first approximation for the system were established. The criterion of stability of motion for the system was set up by using Liapunov's first approximation theory. Based on the theory of Noether symmetry,the Liapunov's function was constructed,and the criterion of stability of motion for the system was also set up by using Liapunov's direct method. Two examples were given to illustrate the application of the results.展开更多
In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space...In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space is used to extract pre-detected regions instead of traditional motion differential method, as it’s more suitable for fire detection in indoor environment. Secondly, according to the flicker characteristic of the flame, similarity and two main values of centroid motion are proposed. At the same time, a simple but effective method for tracking the same regions in consecutive frames is established. Thirdly,a multi-expert system consisting of color component dispersion,similarity and centroid motion is established to identify flames.The proposed method has been tested on a very large dataset of fire videos acquired both in real indoor environment tests and from the Internet. The experimental results show that the proposed approach achieved a balance between the false positive rate and the false negative rate, and demonstrated a better performance in terms of overall accuracy and F standard with respect to other similar fire detection methods in indoor environment.展开更多
This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the...This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the feasibility and the effectiveness are testified by the filtering performance compared with various filtering methods, such as the fast wavelet transform algorithm, the particle filtering method and our previously developed single degree of freedom vibration system filtering algorithm, according to simulation and practical approaches. Meanwhile, the comparisons indicate that a significant advantage of the proposed fast filtering algorithm is its extremely fast filtering speed with good filtering perfi^rmance. Further, the developed fast filtering algorithm is applied to the navigation and positioning system of the micro motion robot, which is a high real-time requirement for the signals preprocessing. Then, the preprocessing data is used to estimate the heading angle error and the attitude angle error of the micro motion robot. The estimation experiments illustrate the high practicality of the proposed fast filtering algorithm.展开更多
基金Supported by the National Natural Science Foundation of China(51677104,51475262)。
文摘The null space of the 6-DOF gain decoupling matrix of actuators and a modified velocity feedback controller are adopted to suppress the vibration of the wafer stage during exposure.To deal with varying flexibilities at different performance locations,the vibration controller is designed to be a time-variant linear quadratic regulator,using the conventional gain scheduling method,which could provide good vibration control for each field under exposure.This control method can guarantee the stability of the closed-loop system and will not deteriorate the rigid modes control of the wafer stage.To minimize the control spillover caused by the higher uncontrolled modes,actuator placement is optimized to minimize their controllability grammians in modal coordinates.An unconstrained rectangular plate is used to represent the fine stage of the wafer stage.Effectiveness of the proposed method is verified on the plate through a closed-loop simulation.
文摘The models of noallnear systems are idendried by recmeive pedctive ermrs(RPE) methed based on thelayered neural networks. To improve the identification precision, gain callcient and arentUm factor are itheucedinto the algorithm for the data are dids by noses and vny suddnly. this lerthm is applied to the twcmedeiling of rolling and pitchng angles of ndssiles. Simulation results shoW tha the proposed algurithm is sultable forthe modelling of nodrinear systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52175279 and 51705459)the Natural Science Foundation of Zhejiang Province,China (Grant No.LY20E050022)the Key Research and Development Projects of Zhejiang Provincial Science and Technology Department (Grant No.2021C03122)。
文摘This paper presented a novel tinny motion capture system for measuring bird posture based on inertial and magnetic measurement units that are made up of micromachined gyroscopes, accelerometers, and magnetometers. Multiple quaternion-based extended Kalman filters were implemented to estimate the absolute orientations to achieve high accuracy.Under the guidance of ornithology experts, the extending/contracting motions and flapping cycles were recorded using the developed motion capture system, and the orientation of each bone was also analyzed. The captured flapping gesture of the Falco peregrinus is crucial to the motion database of raptors as well as the bionic design.
基金supported by the National Natural Science Foundation of China (61503392)。
文摘This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method.
基金Anhui Province Young and Middle-aged Teacher Training Action Excellent Young Teacher Cultivation Project(YQYB2023162)Anhui University Natural Science Research Key Project(KJ2021A1410)Special Topic of the Higher Education Institution Scientific Research Development Center of the Ministry of Education(ZJXF2022080)。
文摘To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings.
文摘Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist .
文摘The differential equations of motion of a comtlaint system with parameters and variable mass, of a system with variable mass and servo constraints and those for the control problem on the forced motion of constraint systems with variable mass are given respectively. Finally, an example is presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.51325502 and 51405175)the National Basic Research Program of China("973"Project)(Grant No.2011CB706804)the National Science and Technology Major Projects of China(Grant No.2012ZX04001-012-01-05)
文摘The cross-coupled control(CCC)is widely applied to reduce contour errors in contour-following applications.In such situation,the contour error estimation plays an important role.Traditionally,the linear or second-order estimation approach is adopted for biaxial motion systems,whereas only linear approach is available for triaxial systems.In this paper,the second-order contour error estimation,which was presented in our previous work,is utilized to determine the variable CCC gains for motion control systems with three axes.An integrated stable motion control strategy,which combines the feedforward,feedback and CCC controllers,is developed for multiaxis CNC systems.Experimental results on a triaxial platform indicate that the CCC scheme based on the second-order estimation,compared with that based on the linear one,significantly reduces the contour error even in the conditions of high tracking feedrate and small radius of curvature.
文摘Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations under infinitesimal transformations was used. Results and Conclusion The determining equaiton of the Lie symmetries for the dynamical equationS of relative motion is established.The structure quation and the form conserved quantities are obtained. An example iD illustrate the application of the result is given.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB035600)the National Natural Science Foundation of China(Grant No.51377121)
文摘The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling control system,a robust adaptive cross-coupling control strategy is proposed.To restrict influences of destabilizing factors and improve both of stability and synchronous performance,the strategy forces dual axes to track the same reference model using Narendra adaptive control theory.And then,a robust parameters adaptive law is proposed.The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory.Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.
基金supported by the National Key Research and Development Program of China(Grant 2016YFB1200602)the National Natural Science Foundation of China (Grants 11672306, 51490673)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22020101)the National Basic Research Program (973 Program) of China (Grant 2014CB046801)the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University)
文摘In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed,the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward,and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.
基金supported by the National Natural Science Foundation of China (41271020, 41330746)CERS-China Equipment and Education Resources System (CERS-1-109)
文摘Although scientists have performed many studies in the Taklimakan Desert, few of them have reported the blown sand motion along the southern edge of the Taklimakan Desert Highway, which differs significantly from the northern region in terms of aeolian sand geomorphology and formation environment. Based on the field ob- servation data of airflow and aeolian sand transport, continuous monitoring data of erosional and depositional processes between 14 April 2009 and 9 April 2011 and data of surface sand grains from the classical section along the southern edge of the Taklimakan Desert Highway, this paper reported the blown sand motion within the sand-control system of the highway. The main results are as follows: 1) The existing sand-control system is highly effective in preventing and controlling desertification. Wind velocities within the sand-control system were ap- proximately 33%-100% of those for the same height above the mobile sand surface. Aeolian sand fluxes were approximately 0-31.21% of those of the mobile sand surface. Sand grains inside the system, with a mean diameter of 2.89 q), were finer than those (2.15 q)) outside the system. In addition, wind velocities basically followed a loga- rithmic law, but the airflow along the classical section was mainly determined by topography and vegetation. 2) There were obvious erosional and depositional phenomena above the surface within the sand-control system, and these phenomena have very consistent patterns for all observation points in the two observed years. The total thicknesses of erosion and deposition ranged from 0.30 to 14.60 cm, with a mean value of 3.67 cm. In contrast, the deposition thicknesses were 1.90-22.10 cm, with a mean value of 7.59 cm, and the erosion thicknesses were 3.51-15.10 cm, with a mean value of 8.75 cm. The results will aid our understanding of blown sand within the sand-control system and provide a strong foundation for optimizing the sand-control system.
基金supported by the National Natural Science Foundation of China (Grant No 10372053)the Natural Science Foundation of Henan Province,China (Grant Nos 082300410330 and 082300410370)
文摘This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion. The necessary and sufficient conditions of conformal invariance and Lie symmetry are given simultaneously by the action of infinitesimal transformations. Then it obtains the conserved quantities of conformal invariance by the infinitesimal transformations. Finally an example is given to illustrate the application of the results.
基金Project(50425518) supported by National Outstanding Youth Foundation of China Project(2007CB714004) supported by National Basic Research Program of China
文摘The thrust hydraulic system of the prototype shield machine with pressure and flow compound control scheme was introduced. The experimental system integrated with proportional valves for study was designed. Dynamics modeling of multi-cylinder thrust system and synchronous control design were accomplished. The simulation of the synchronization motion control system was completed in AMESim and Matlab/Simulink software environments. The experiment was conducted by means of master/slave PID with dead band compensating flow and conventional PID regulating pressure. The experimental results show that the proposed thrust hydraulic system and its control strategy can meet the requirements of tunneling in motion and posture control for the shield machine, keeping the non-synchronous error within ±3 mm.
文摘This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion parameters are used to define the scatter of the original data. The ratio of peak ground acceleration to peak ground velocity, and peak ground velocity of the ground motion records and structural parameters such as period of vibration and lateral strength ratio are used in the proposed equations. For the development of the equations, nonlinear time history analyses of single-degree-offreedom systems are conducted. Then, the results are used in a multivariate regression procedure. The equations are verified by comparing the estimated results with the calculated results. The average error and coefficient of variation of the proposed equations are presented. The analyses results revealed that the direct use of peak ground motion parameters for the estimation of inelastic displacement ratio significantly reduced the scatter in the original data and yielded accurate results. From the comparative results it is also observed that results obtained using equations specific to peak ground velocity or peak ground acceleration to peak ground velocity ratio are similar.
基金Sponsored by the National Natural Science Foundation of China( 10972151)the Natural Science Foundation of Higher Education Institution of Jiangsu Province,China ( 08KJB130002)
文摘The problem on the stability of motion for a generalized Birkhoffian system was studied. The disturbed equations of motion and their first approximation for the system were established. The criterion of stability of motion for the system was set up by using Liapunov's first approximation theory. Based on the theory of Noether symmetry,the Liapunov's function was constructed,and the criterion of stability of motion for the system was also set up by using Liapunov's direct method. Two examples were given to illustrate the application of the results.
基金supported by National Natural Science Foundation of China(41471387,41631072)
文摘In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space is used to extract pre-detected regions instead of traditional motion differential method, as it’s more suitable for fire detection in indoor environment. Secondly, according to the flicker characteristic of the flame, similarity and two main values of centroid motion are proposed. At the same time, a simple but effective method for tracking the same regions in consecutive frames is established. Thirdly,a multi-expert system consisting of color component dispersion,similarity and centroid motion is established to identify flames.The proposed method has been tested on a very large dataset of fire videos acquired both in real indoor environment tests and from the Internet. The experimental results show that the proposed approach achieved a balance between the false positive rate and the false negative rate, and demonstrated a better performance in terms of overall accuracy and F standard with respect to other similar fire detection methods in indoor environment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60901074,51075092,61005076,and 61175107)the National High Technology Research and Development Program of China(Grant No.2007AA042105)the Natural Science Foundation of Heilongjiang Province,China(Grant No.E200903)
文摘This paper develops a fast filtering algorithm based on vibration systems theory and neural information exchange approach. The characters, including the derivation process and parameter analysis, are discussed and the feasibility and the effectiveness are testified by the filtering performance compared with various filtering methods, such as the fast wavelet transform algorithm, the particle filtering method and our previously developed single degree of freedom vibration system filtering algorithm, according to simulation and practical approaches. Meanwhile, the comparisons indicate that a significant advantage of the proposed fast filtering algorithm is its extremely fast filtering speed with good filtering perfi^rmance. Further, the developed fast filtering algorithm is applied to the navigation and positioning system of the micro motion robot, which is a high real-time requirement for the signals preprocessing. Then, the preprocessing data is used to estimate the heading angle error and the attitude angle error of the micro motion robot. The estimation experiments illustrate the high practicality of the proposed fast filtering algorithm.