期刊文献+
共找到53,585篇文章
< 1 2 250 >
每页显示 20 50 100
Motion/Posture Modeling and Simulation Verification of Physically Handicapped in Manufacturing System Design 被引量:3
1
作者 FU Yan LI Shiqi CHEN Gwen-guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期225-231,共7页
Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing s... Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing system is extremely complex and generally requires modeling of physically handicapped interaction with the system. Most current modeling either concentrates on the task results or functional disability. The integration of physical constraints with task constraints is far more complex because of functional disability and its extended influence on adjacent body parts. A framework is proposed to integrate the two constraints and thus model the specific behavior of the physical handicapped in virtual environment generated by product specifications. Within the framework a simplified model of physical disabled body is constructed, and body motion is generated based on 3 levels of constraints(effecter constraints, kinematics constraints and physical constraints). The kinematics and dynamic calculations are made and optimized based on the weighting manipulated by the kinematics constraints and dynamic constraints. With object transferring task as example, the model is validated in Jack 6.0. Modelled task motion elements except for squatting and overreaching well matched with captured motion elements. The proposed modeling method can model the complex behavior of the physically handicapped by integrating both task and physical disability constraints. 展开更多
关键词 physical handicapped motion/posture modeling manufacturing system design
下载PDF
An Approach for Human Posture Recognition Based on the Fusion PSE-CNN-BiGRU Model
2
作者 Xianghong Cao Xinyu Wang +2 位作者 Xin Geng Donghui Wu Houru An 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期385-408,共24页
This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognit... This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments.Firstly,the deep convolutional network is integrated with the Mediapipe framework to extract high-precision,multi-dimensional information from the key points of the human skeleton,thereby obtaining a human posture feature set.Thereafter,a double-layer BiGRU algorithm is utilized to extract multi-layer,bidirectional temporal features from the human posture feature set,and a CNN network with an exponential linear unit(ELU)activation function is adopted to perform deep convolution of the feature map to extract the spatial feature of the human posture.Furthermore,a squeeze and excitation networks(SENet)module is introduced to adaptively learn the importance weights of each channel,enhancing the network’s focus on important features.Finally,comparative experiments are performed on available datasets,including the public human activity recognition using smartphone dataset(UCIHAR),the public human activity recognition 70 plus dataset(HAR70PLUS),and the independently developed home abnormal behavior recognition dataset(HABRD)created by the authors’team.The results show that the average accuracy of the proposed PSE-CNN-BiGRU fusion model for human posture recognition is 99.56%,89.42%,and 98.90%,respectively,which are 5.24%,5.83%,and 3.19%higher than the average accuracy of the five models proposed in the comparative literature,including CNN,GRU,and others.The F1-score for abnormal posture recognition reaches 98.84%(heartache),97.18%(fall),99.6%(bellyache),and 98.27%(climbing)on the self-builtHABRDdataset,thus verifying the effectiveness,generalization,and robustness of the proposed model in enhancing human posture recognition. 展开更多
关键词 posture recognition mediapipe BiGRU CNN ELU ATTENTION
下载PDF
Sleep Posture Classification Using RGB and Thermal Cameras Based on Deep Learning Model
3
作者 Awais Khan Chomyong Kim +2 位作者 Jung-Yeon Kim Ahsan Aziz Yunyoung Nam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1729-1755,共27页
Sleep posture surveillance is crucial for patient comfort,yet current systems face difficulties in providing compre-hensive studies due to the obstruction caused by blankets.Precise posture assessment remains challeng... Sleep posture surveillance is crucial for patient comfort,yet current systems face difficulties in providing compre-hensive studies due to the obstruction caused by blankets.Precise posture assessment remains challenging because of the complex nature of the human body and variations in sleep patterns.Consequently,this study introduces an innovative method utilizing RGB and thermal cameras for comprehensive posture classification,thereby enhancing the analysis of body position and comfort.This method begins by capturing a dataset of sleep postures in the form of videos using RGB and thermal cameras,which depict six commonly adopted postures:supine,left log,right log,prone head,prone left,and prone right.The study involves 10 participants under two conditions:with and without blankets.Initially,the database is normalized into a video frame.The subsequent step entails training a fine-tuned,pretrained Visual Geometry Group(VGG16)and ResNet50 model.In the third phase,the extracted features are utilized for classification.The fourth step of the proposed approach employs a serial fusion technique based on the normal distribution to merge the vectors derived from both the RGB and thermal datasets.Finally,the fused vectors are passed to machine learning classifiers for final classification.The dataset,which includes human sleep postures used in this study’s experiments,achieved a 96.7%accuracy rate using the Quadratic Support Vector Machine(QSVM)without the blanket.Moreover,the Linear SVM,when utilized with a blanket,attained an accuracy of 96%.When normal distribution serial fusion was applied to the blanket features,it resulted in a remarkable average accuracy of 99%. 展开更多
关键词 Human sleep posture VGG16 deep learning ResNet50 FUSION machine learning
下载PDF
Multi-Branch High-Dimensional Guided Transformer-Based 3D Human Posture Estimation
4
作者 Xianhua Li Haohao Yu +2 位作者 Shuoyu Tian Fengtao Lin Usama Masood 《Computers, Materials & Continua》 SCIE EI 2024年第3期3551-3564,共14页
The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in ... The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in the per-frame 3D posture estimation from two-dimensional(2D)mapping to 3D mapping.Firstly,by examining the relationship between the movements of different bones in the human body,four virtual skeletons are proposed to enhance the cyclic constraints of limb joints.Then,multiple parameters describing the skeleton are fused and projected into a high-dimensional space.Utilizing a multi-branch network,motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results.Furthermore,the estimated relative depth is projected into 3D space,and the error is calculated against real 3D data,forming a loss function along with the relative depth error.This article adopts the average joint pixel error as the primary performance metric.Compared to the benchmark approach,the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample. 展开更多
关键词 Key point detection 3D human posture estimation computer vision deep learning
下载PDF
Fusion of Convolutional Self-Attention and Cross-Dimensional Feature Transformationfor Human Posture Estimation
5
作者 Anzhan Liu Yilu Ding Xiangyang Lu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期346-360,共15页
Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which ... Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation. 展开更多
关键词 human posture estimation adaptive fusion method cross-dimensional interaction attention module high-resolution network
下载PDF
Posture Detection of Heart Disease Using Multi-Head Attention Vision Hybrid(MHAVH)Model
6
作者 Hina Naz Zuping Zhang +3 位作者 Mohammed Al-Habib Fuad A.Awwad Emad A.A.Ismail Zaid Ali Khan 《Computers, Materials & Continua》 SCIE EI 2024年第5期2673-2696,共24页
Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may ... Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications. 展开更多
关键词 Image analysis posture of heart attack(PHA)detection hybrid features VGG-16 ResNet-50 vision transformer advance multi-head attention layer
下载PDF
Computer Vision-Based Human Body Posture Correction System
7
作者 Yangsen QIU Yukun WANG +2 位作者 Yuchen WU Xinyi QIANG Yunzuo ZHANG 《Mechanical Engineering Science》 2024年第1期1-7,共7页
With the development of technology and the progress of life,more and more people,regardless of entertainment,learning,or work,cannot do without computer desks and cannot put down their mobile phones.Due to prolonged s... With the development of technology and the progress of life,more and more people,regardless of entertainment,learning,or work,cannot do without computer desks and cannot put down their mobile phones.Due to prolonged sitting and often neglecting the importance of posture,incorrect posture can often lead to health problems such as hunchback,lumbar muscle strain,and shoulder and neck pain over time.To address this issue,we designed a computer vision-based human body posture detection system.The system utilizes YOLOv8 technology to accurately locate key points of the human body skeleton,and then analyzes the coordinate positions and depth information of these key points to establish a criterion for distinguishing different postures.With the assistance of an SVM classifier,the system achieves an average recognition rate of 95%.Finally,we successfully deployed the posture detection system on Raspberry Pi hardware and conducted extensive testing.The test results demonstrate that the system can effectively detect various postures and provide real-time reminders to users to correct poor posture,demonstrating good practicality and stability. 展开更多
关键词 computer vision human posture deep learning image processing
下载PDF
A Survey on Artificial Intelligence in Posture Recognition 被引量:3
8
作者 Xiaoyan Jiang Zuojin Hu +1 位作者 Shuihua Wang Yudong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期35-82,共48页
Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose o... Over the years,the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded.The purpose of this paper is to introduce the latest methods of posture recognition and review the various techniques and algorithms of posture recognition in recent years,such as scale-invariant feature transform,histogram of oriented gradients,support vectormachine(SVM),Gaussian mixturemodel,dynamic time warping,hiddenMarkovmodel(HMM),lightweight network,convolutional neural network(CNN).We also investigate improved methods of CNN,such as stacked hourglass networks,multi-stage pose estimation networks,convolutional posemachines,and high-resolution nets.The general process and datasets of posture recognition are analyzed and summarized,and several improved CNNmethods and threemain recognition techniques are compared.In addition,the applications of advanced neural networks in posture recognition,such as transfer learning,ensemble learning,graph neural networks,and explainable deep neural networks,are introduced.It was found that CNN has achieved great success in posture recognition and is favored by researchers.Still,a more in-depth research is needed in feature extraction,information fusion,and other aspects.Among classification methods,HMM and SVM are the most widely used,and lightweight network gradually attracts the attention of researchers.In addition,due to the lack of 3Dbenchmark data sets,data generation is a critical research direction. 展开更多
关键词 posture recognition artificial intelligence machine learning deep neural network deep learning transfer learning feature extraction CLASSIFICATION
下载PDF
基于Leap Motion手势识别的三维交互系统 被引量:1
9
作者 项融融 李博 赵桥 《电子设计工程》 2024年第1期44-48,共5页
随着虚拟交互技术的发展,人们迈入了“体验式经济时代”,消费者越来越关注个性体验,因此,基于Leap Motion手势识别设备,设计了一种三维虚拟室内交互系统。该系统以Unity3D作为开发工具,Leap Motion作为硬件平台,结合C#语言进行脚本的编... 随着虚拟交互技术的发展,人们迈入了“体验式经济时代”,消费者越来越关注个性体验,因此,基于Leap Motion手势识别设备,设计了一种三维虚拟室内交互系统。该系统以Unity3D作为开发工具,Leap Motion作为硬件平台,结合C#语言进行脚本的编译,利用3ds Max平台对室内进行场景搭建,通过Unity3D工具将组件整合,设计了七种手势,使用Leap Motion硬件设备对场景中物体进行各种不同的操作。经试验表明,该系统实现了用户与场景中物体的交互能力,可以应用在室内装修和设计等方面,增强人们的体验感与趣味性。 展开更多
关键词 Leap motion 手势识别 UNITY3D 虚拟交互
下载PDF
Nursing model of midwifery and postural and psychological interventions:Impact on maternal and fetal outcomes and negative emotions of primiparas 被引量:1
10
作者 Ping Gao Cai-Qiong Guo +1 位作者 Ma-Yu Chen Hui-Ping Zhuang 《World Journal of Psychiatry》 SCIE 2023年第8期543-550,共8页
BACKGROUND Primiparas are usually at high risk of experiencing perinatal depression,which may cause prolonged labor,increased blood loss,and intensified pain,affecting maternal and fetal outcomes.Therefore,interventio... BACKGROUND Primiparas are usually at high risk of experiencing perinatal depression,which may cause prolonged labor,increased blood loss,and intensified pain,affecting maternal and fetal outcomes.Therefore,interventions are necessary to improve maternal and fetal outcomes and alleviate primiparas’negative emotions(NEs).AIM To discusses the impact of nursing responsibility in midwifery and postural and psychological interventions on maternal and fetal outcomes as well as primiparas’NEs.METHODS As participants,115 primiparas admitted to Quanzhou Maternity and Child Healthcare Hospital between May 2020 and May 2022 were selected.Among them,56 primiparas(control group,Con)were subjected to conventional midwifery and routine nursing.The remaining 59(research group,Res)were subjected to the nursing model of midwifery and postural and psychological interventions.Both groups were comparatively analyzed from the perspectives of delivery mode(cesarean,natural,or forceps-assisted),maternal and fetal outcomes(uterine inertia,postpartum hemorrhage,placental abruption,neonatal pulmonary injury,and neonatal asphyxia),NEs(Hamilton Anxiety/Depressionrating Scale,HAMA/HAMD),labor duration,and nursing satisfaction.RESULTS The Res exhibited a markedly higher natural delivery rate and nursing satisfaction than the Con.Additionally,the Res indicated a lower incidence of adverse events(e.g.,uterine inertia,postpartum hemorrhage,placental abruption,neonatal lung injury,and neonatal asphyxia)and shortened duration of various stages of labor.It also showed statistically lower post-interventional HAMA and HAMD scores than the Con and pre-interventional values.CONCLUSION The nursing model of midwifery and postural and psychological interventions increase the natural delivery rate and reduce the duration of each labor stage.These are also conducive to improving maternal and fetal outcomes and mitigating primiparas’NEs and thus deserve popularity in clinical practice. 展开更多
关键词 Nursing model of midwifery postural intervention PRIMIPARA Maternal and fetal outcomes Negative emotions
下载PDF
Technological advancements in the analysis of human motion and posture management through digital devices 被引量:2
11
作者 Federico Roggio Silvia Ravalli +4 位作者 Grazia Maugeri Antonino Bianco Antonio Palma Michelino Di Rosa Giuseppe Musumeci 《World Journal of Orthopedics》 2021年第7期467-484,共18页
Technological development of motion and posture analyses is rapidly progressing,especially in rehabilitation settings and sport biomechanics.Consequently,clear discrimination among different measurement systems is req... Technological development of motion and posture analyses is rapidly progressing,especially in rehabilitation settings and sport biomechanics.Consequently,clear discrimination among different measurement systems is required to diversify their use as needed.This review aims to resume the currently used motion and posture analysis systems,clarify and suggest the appropriate approaches suitable for specific cases or contexts.The currently gold standard systems of motion analysis,widely used in clinical settings,present several limitations related to marker placement or long procedure time.Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies,especially outside laboratories.Similarly,new posture analysis techniques are emerging,often driven by the need for fast and non-invasive methods to obtain high-precision results.These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies.The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient.Herein,these devices and their uses are described,providing researchers,clinicians,orthopedics,physical therapists,and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis,therapy,and prevention. 展开更多
关键词 motion capture Gait analysis Inertial measurement unit Wearable devices Rasterstereography posture
下载PDF
A Realistic 3D Non-Stationary Channel Model for UAV-to-Vehicle Communications Incorporating Fuselage Posture
12
作者 Boyu Hua Tongtong Zhou +3 位作者 Qiuming Zhu Kai Mao Junwei Bao Weizhi Zhong 《China Communications》 SCIE CSCD 2023年第6期277-290,共14页
Considering the unmanned aerial vehicle(UAV) three-dimensional(3D) posture, a novel 3D non-stationary geometry-based stochastic model(GBSM) is proposed for multiple-input multipleoutput(MIMO) UAV-to-vehicle(U2V) chann... Considering the unmanned aerial vehicle(UAV) three-dimensional(3D) posture, a novel 3D non-stationary geometry-based stochastic model(GBSM) is proposed for multiple-input multipleoutput(MIMO) UAV-to-vehicle(U2V) channels. It consists of a line-of-sight(Lo S) and non-line-of-sight(NLo S) components. The factor of fuselage posture is considered by introducing a time-variant 3D posture matrix. Some important statistical properties, i.e.the temporal autocorrelation function(ACF) and spatial cross correlation function(CCF), are derived and investigated. Simulation results show that the fuselage posture has significant impact on the U2V channel characteristic and aggravate the non-stationarity. The agreements between analytical, simulated, and measured results verify the correctness of proposed model and derivations. Moreover, it is demonstrated that the proposed model is also compatible to the existing GBSM without considering fuselage posture. 展开更多
关键词 channel model unmanned aerial vehicle NON-STATIONARY fuselage posture
下载PDF
Force Sensitive Resistors-Based Real-Time Posture Detection System Using Machine Learning Algorithms
13
作者 Arsal Javaid Areeb Abbas +4 位作者 Jehangir Arshad Mohammad Khalid Imam Rahmani Sohaib Tahir Chauhdary Mujtaba Hussain Jaffery Abdulbasid S.Banga 《Computers, Materials & Continua》 SCIE EI 2023年第11期1795-1814,共20页
To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Susta... To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Sustainable Development Goal(SDG),ensuring healthy lives and promoting well-being for all ages,as specified by the World Health Organization(WHO).An improper sitting position can be fatal if one sits for a long time in the wrong position,and it can be dangerous for ulcers and lower spine discomfort.This novel study includes a practical implementation of a cushion consisting of a grid of 3×3 force-sensitive resistors(FSR)embedded to read the pressure of the person sitting on it.Additionally,the Body Mass Index(BMI)has been included to increase the resilience of the system across individual physical variances and to identify the incorrect postures(backward,front,left,and right-leaning)based on the five machine learning algorithms:ensemble boosted trees,ensemble bagged trees,ensemble subspace K-Nearest Neighbors(KNN),ensemble subspace discriminant,and ensemble RUSBoosted trees.The proposed arrangement is novel as existing works have only provided simulations without practical implementation,whereas we have implemented the proposed design in Simulink.The results validate the proposed sensor placements,and the machine learning(ML)model reaches a maximum accuracy of 99.99%,which considerably outperforms the existing works.The proposed concept is valuable as it makes it easier for people in workplaces or even at individual household levels to work for long periods without suffering from severe harmful effects from poor posture. 展开更多
关键词 posture detection FSR sensor machine learning REAL-TIME KNN
下载PDF
Pulses in ground motions identified through surface partial matching and their impact on seismic rocking consequence 被引量:1
14
作者 Tang Yuchuan Wang Jiankang Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期35-50,共16页
In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establis... In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified. 展开更多
关键词 velocity pulse ground motion surface similarity ROCKING OVERTURNING
下载PDF
Calf Posture Recognition Using Convolutional Neural Network
15
作者 Tan Chen Tung Uswah Khairuddin +3 位作者 Mohd Ibrahim Shapiai Norhariani Md Nor Mark Wen Han Hiew Nurul Aisyah Mohd Suhaimie 《Computers, Materials & Continua》 SCIE EI 2023年第1期1493-1508,共16页
Dairy farm management is crucial to maintain the longevity of the farm,and poor dairy youngstock or calf management could lead to gradually deteriorating calf health,which often causes premature death.This was found t... Dairy farm management is crucial to maintain the longevity of the farm,and poor dairy youngstock or calf management could lead to gradually deteriorating calf health,which often causes premature death.This was found to be the most neglected part among the management workflows in Malaysia and has caused continuous loss over the recent years.Calf posture recognition is one of the effective methods to monitor calf behaviour and health state,which can be achieved by monitoring the calf behaviours of standing and lying where the former depicts active calf,and the latter,passive calf.Calf posture recognition module is an important component of some automated calf monitoring systems,as the system requires the calf to be in a standing posture before proceeding to the next stage of monitoring,or at the very least,to monitor the activeness of the calves.Calf posture such as standing or resting can easily be distinguished by human eye,however,to be recognized by a machine,it will require more complicated frameworks,particularly one that involves a deep learning neural networks model.Large number of highquality images are required to train a deep learning model for such tasks.In this paper,multiple ConvolutionalNeuralNetwork(CNN)architectures were compared,and the residual network(ResNet)model(specifically,ResNet-50)was ultimately chosen due to its simplicity,great performance,and decent inference time.Two ResNet-50 models having the exact same architecture and configuration have been trained on two different image datasets respectively sourced by separate cameras placed at different angle.There were two camera placements to use for comparison because camera placements can significantly impact the quality of the images,which is highly correlated to the deep learning model performance.After model training,the performance for both CNN models were 99.7%and 99.99%accuracies,respectively,and is adequate for a real-time calf monitoring system. 展开更多
关键词 Calf posture machine vision deep learning transfer learning
下载PDF
Motion Planning for Autonomous Driving with Real Traffic Data Validation 被引量:1
16
作者 Wenbo Chu Kai Yang +1 位作者 Shen Li Xiaolin Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期74-86,共13页
Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed bas... Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method. 展开更多
关键词 Trajectory prediction Graph neural network motion planning INTERACTION dataset
下载PDF
基于Leap motion 的大学物理实验虚拟课堂设计
17
作者 何小勇 何林 +1 位作者 杨嘉铭 袁玉峰 《高师理科学刊》 2024年第5期93-97,共5页
通过利用手势控制器(Leap Motion)技术,设计并实施一套创新的大学物理虚拟实验课程.通过在Unity3D软件中整合Leap Motion,创建一个大学物理实验测量杨氏模量实验场景,主要是利用C#语言进行开发,通过设计出多个模块,包括主界面设计和基... 通过利用手势控制器(Leap Motion)技术,设计并实施一套创新的大学物理虚拟实验课程.通过在Unity3D软件中整合Leap Motion,创建一个大学物理实验测量杨氏模量实验场景,主要是利用C#语言进行开发,通过设计出多个模块,包括主界面设计和基本实验组件来完成物理实验的设计.在Leap Motion官网上下载关于Unity3D的SDK资源包并且导入Unity3D中,用其建立手部模型,实现Leap Motion控制器与Unity3D的手部交互实验系统的设计.人机交互技术的引入不仅可以丰富大学物理实验的教学手段,而且还能提高学生的学科理解和实际操作能力,同时培养其创新思维和科技素养. 展开更多
关键词 Leap motion UNITY3D 人机交互 虚拟课堂 实验设计
下载PDF
Positron Emission Tomography Lung Image Respiratory Motion Correcting with Equivariant Transformer
18
作者 Jianfeng He Haowei Ye +2 位作者 Jie Ning Hui Zhou Bo She 《Computers, Materials & Continua》 SCIE EI 2024年第5期3355-3372,共18页
In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our studyintroduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learningbasedfr... In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our studyintroduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learningbasedframework for efficient respiratory motion correction in PET imaging. Unlike traditional techniques,which segment PET data into bins throughout a respiratory cycle and often face issues such as inefficiency andoveremphasis on certain artifacts, TEMT employs Convolutional Neural Networks (CNNs) for effective featureextraction and motion decomposition.TEMT’s unique approach involves transforming motion sequences into Liegroup domains to highlight fundamental motion patterns, coupled with employing competitive weighting forprecise target deformation field generation. Our empirical evaluations confirm TEMT’s superior performancein handling diverse PET lung datasets compared to existing image registration networks. Experimental resultsdemonstrate that TEMT achieved Dice indices of 91.40%, 85.41%, 79.78%, and 72.16% on simulated geometricphantom data, lung voxel phantom data, cardiopulmonary voxel phantom data, and clinical data, respectively. Tofacilitate further research and practical application, the TEMT framework, along with its implementation detailsand part of the simulation data, is made publicly accessible at https://github.com/yehaowei/temt. 展开更多
关键词 PET lung scans respiratory motion correction triple equivariant motion transformer lie group motion decomposition
下载PDF
Safe Motion Planning and Control Framework for Automated Vehicles with Zonotopic TRMPC
19
作者 Hao Zheng Yinong Li +1 位作者 Ling Zheng Ehsan Hashemi 《Engineering》 SCIE EI CAS CSCD 2024年第2期146-159,共14页
Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ... Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties. 展开更多
关键词 Automated vehicles Automated driving motion planning motion control Tube MPC ZONOTOPE
下载PDF
A HEVC Video Steganalysis Method Using the Optimality of Motion Vector Prediction
20
作者 Jun Li Minqing Zhang +2 位作者 Ke Niu Yingnan Zhang Xiaoyuan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2085-2103,共19页
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio... Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios. 展开更多
关键词 Video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部