The article proposes to use the Euler equations to describe the motion of a stationary stream in the cleaning zones, which allows us to determine the laws of the distribution of pressure, density and speed along the a...The article proposes to use the Euler equations to describe the motion of a stationary stream in the cleaning zones, which allows us to determine the laws of the distribution of pressure, density and speed along the arc of contact of the moving layer of raw cotton with the surface of the mesh during impact with spikes on the pulp. It was found that the pressure, density and flow velocity along the cleaning arc as a result of the hammer spikes change stepwise with decreasing pressure and density and increasing flow velocity along this arc.展开更多
If a traditional explicit numerical integration algorithm is used to solve motion equation in the finite element simulation of wave motion, the time-step used by numerical integration is the smallest time-step restric...If a traditional explicit numerical integration algorithm is used to solve motion equation in the finite element simulation of wave motion, the time-step used by numerical integration is the smallest time-step restricted by the stability criterion in computational region. However, the excessively small time-step is usually unnecessary for a large portion of computational region. In this paper, a varying time-step explicit numerical integration algorithm is introduced, and its basic idea is to use different time-step restricted by the stability criterion in different computational region. Finally, the feasibility of the algorithm and its effect on calculating precision are verified by numerical test.展开更多
An explicit finite difference method is performed to evaluate the significance of topography effects on the seismic response of viscoelastic sites.The real accelerograms and bell-shape impulse wavelets,slope angle of ...An explicit finite difference method is performed to evaluate the significance of topography effects on the seismic response of viscoelastic sites.The real accelerograms and bell-shape impulse wavelets,slope angle of cliff and angle of incidence on the spectrum property of the incoming waves are all discussed in detail.The conclusions show that the presence of topographic factors and the direction of the incident waves not only significantly affect the peak ground acceleration of a site,but also affect the spectrum properties of the incoming waves,and the effect on the direction of the incident waves is especially remarkable.The study also finds that it is reasonable to analyse spectrum properties with the input of impulse wavelets in the finite element simulation of wave motion.展开更多
We applied the discrete element method (DEM) of simulation modified by an enlarged particle model to simulate bead motion in a large bead mill. The stainless-steel bead mill has inner diameter of 102 mm and mill len...We applied the discrete element method (DEM) of simulation modified by an enlarged particle model to simulate bead motion in a large bead mill. The stainless-steel bead mill has inner diameter of 102 mm and mill length of 198 mm. The bead diameter and filling ratio were fixed respectively at 0.5 mm and 85%. The agitator rotational speed was changed from 1863 to 3261 rpm. The bead motion was monitored experimentally using a high-speed video camera through a transparent mill body. For the simulation, enlarged particle sizes were set as 3-6 mm in diameter. With the DEM modified by the enlarged particle model, the motion of enlarged particles in a mill was simulated.The velocity data of the simulated enlarged particles were compared with those obtained in the experiment. The simulated velocity of the enlarged particles depends on the virtual frictional coefficient in the DEM model. The optimized value of the virtual frictional coefficient can be determined by considering the accumulated mean value. Results show that the velocity of the enlarged particles simulated increases with an increase in the optimum virtual frictional coefficient, but the simulated velocity agrees well with that determined experimentally by optimizing the virtual frictional coefficient in the simulation. The computing time in the simulation decreases with increased particle size.展开更多
文摘The article proposes to use the Euler equations to describe the motion of a stationary stream in the cleaning zones, which allows us to determine the laws of the distribution of pressure, density and speed along the arc of contact of the moving layer of raw cotton with the surface of the mesh during impact with spikes on the pulp. It was found that the pressure, density and flow velocity along the cleaning arc as a result of the hammer spikes change stepwise with decreasing pressure and density and increasing flow velocity along this arc.
基金National Natural Science Foundation of China (50178065), 973 Program (2002CB412706), National Social Com-monweal Research Foundation (2002DIB30076) and Joint Seismological Science Foundation (101066).
文摘If a traditional explicit numerical integration algorithm is used to solve motion equation in the finite element simulation of wave motion, the time-step used by numerical integration is the smallest time-step restricted by the stability criterion in computational region. However, the excessively small time-step is usually unnecessary for a large portion of computational region. In this paper, a varying time-step explicit numerical integration algorithm is introduced, and its basic idea is to use different time-step restricted by the stability criterion in different computational region. Finally, the feasibility of the algorithm and its effect on calculating precision are verified by numerical test.
基金This project was supported by the Research Fund for the Basic Operation of National Social Welfare Institutions (J2207831)the National Science Supporting Program(2006BAC13B01)
文摘An explicit finite difference method is performed to evaluate the significance of topography effects on the seismic response of viscoelastic sites.The real accelerograms and bell-shape impulse wavelets,slope angle of cliff and angle of incidence on the spectrum property of the incoming waves are all discussed in detail.The conclusions show that the presence of topographic factors and the direction of the incident waves not only significantly affect the peak ground acceleration of a site,but also affect the spectrum properties of the incoming waves,and the effect on the direction of the incident waves is especially remarkable.The study also finds that it is reasonable to analyse spectrum properties with the input of impulse wavelets in the finite element simulation of wave motion.
文摘We applied the discrete element method (DEM) of simulation modified by an enlarged particle model to simulate bead motion in a large bead mill. The stainless-steel bead mill has inner diameter of 102 mm and mill length of 198 mm. The bead diameter and filling ratio were fixed respectively at 0.5 mm and 85%. The agitator rotational speed was changed from 1863 to 3261 rpm. The bead motion was monitored experimentally using a high-speed video camera through a transparent mill body. For the simulation, enlarged particle sizes were set as 3-6 mm in diameter. With the DEM modified by the enlarged particle model, the motion of enlarged particles in a mill was simulated.The velocity data of the simulated enlarged particles were compared with those obtained in the experiment. The simulated velocity of the enlarged particles depends on the virtual frictional coefficient in the DEM model. The optimized value of the virtual frictional coefficient can be determined by considering the accumulated mean value. Results show that the velocity of the enlarged particles simulated increases with an increase in the optimum virtual frictional coefficient, but the simulated velocity agrees well with that determined experimentally by optimizing the virtual frictional coefficient in the simulation. The computing time in the simulation decreases with increased particle size.