A novel silicon carbide gate-controlled bipolar field effect composite transistor with poly silicon region(SiC GCBTP)is proposed.Different from the traditional electrode connection mode of SiC vertical diffused MOS(VD...A novel silicon carbide gate-controlled bipolar field effect composite transistor with poly silicon region(SiC GCBTP)is proposed.Different from the traditional electrode connection mode of SiC vertical diffused MOS(VDMOS),the P+region of P-well is connected with the gate in SiC GCBTP,and the polysilicon region is added between the P+region and the gate.By this method,additional minority carriers can be injected into the drift region at on-state,and the distribution of minority carriers in the drift region will be optimized,so the on-state current is increased.In terms of static characteristics,it has the same high breakdown voltage(811 V)as SiC VDMOS whose length of drift is 5.5μm.The on-state current of SiC GCBTP is 2.47×10^(-3)A/μm(V_(G)=10 V,V_(D)=10 V)which is 5.7 times of that of SiC IGBT and 36.4 times of that of SiC VDMOS.In terms of dynamic characteristics,the turn-on time of SiC GCBTP is only 0.425 ns.And the turn-off time of SiC GCBTP is similar to that of SIC insulated gate bipolar transistor(IGBT),which is 114.72 ns.展开更多
With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated gu...With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated guided vehicle(AGV)motor driver in port environment,and improves heat dissipation by analyzing and optimizing the core component of finned heat sink.Firstly,the temperature distribution of the initial scheme is studied by using Fluent software,and the heat transfer characteristics of the finned heat sink are obtained through numerical analysis.Secondly,an orthogonal test is designed and combined with the response surface methodology to optimize the structural parameters of the finned heat sink,resulting in a 14.57%increase in the heat dissipation effect.Finally,the effectiveness of heat dissipation enhancement is verified.This work provides valuable insights into improving the heat dissipation of IGBT modules and heat sinks,and provides guidance for their future applications.展开更多
A novel 4H-Si C trench insulated gate bipolar transistor(IGBT)with a controllable hole-extracting(CHE)path is proposed and investigated in this paper.The CHE path is controlled by metal semiconductor gate(MES gate)and...A novel 4H-Si C trench insulated gate bipolar transistor(IGBT)with a controllable hole-extracting(CHE)path is proposed and investigated in this paper.The CHE path is controlled by metal semiconductor gate(MES gate)and metal oxide semiconductor gate(MOS gate)in the p-shield region.The grounded p-shield region can significantly suppress the high electric field around gate oxide in Si C devices,but it weakens the conductivity modulation in the Si C trench IGBT by rapidly sweeping out holes.This effect can be eliminated by introducing the CHE path.The CHE path is pinched off by the high gate bias voltage at on-state to maintain high conductivity modulation and obtain a comparatively low on-state voltage(VON).During the turn-off transient,the CHE path is formed,which contributes to a decreased turn-off loss(EOFF).Based on numerical simulation,the EOFFof the proposed IGBT is reduced by 89%compared with the conventional IGBT at the same VONand the VONof the proposed IGBT is reduced by 50%compared to the grounded p-shield IGBT at the same EOFF.In addition,the average power reduction for the proposed device can be 51.0%to 81.7%and 58.2%to 72.1%with its counterparts at a wide frequency range of 500 Hz to 10 k Hz,revealing a great improvement of frequency characteristics.展开更多
A novel trench insulated gate bipolar transistor(IGBT) with improved dynamic characteristics is proposed and investigated. The poly gate and poly emitter of the proposed IGBT are arranged alternately along the trench....A novel trench insulated gate bipolar transistor(IGBT) with improved dynamic characteristics is proposed and investigated. The poly gate and poly emitter of the proposed IGBT are arranged alternately along the trench. A self-biased p-MOSFET is formed on the emitter side. Owing to this unique three-dimensional(3D) trench architecture, both the turnoff characteristic and the turn-on characteristic can be greatly improved. At the turn-off moment, the maximum electric field and impact ionization rate of the proposed IGBT decrease and the dynamic avalanche(DA) is suppressed. Comparing with the carrier-stored trench gate bipolar transistor(CSTBT), the turn-off loss(E_(off)) of the proposed IGBT also decreases by 31% at the same ON-state voltage. At the turn-on moment, the built-in p-MOSFET reduces the reverse displacement current(I_(G_dis)), which is conducive to lowing dI_(C)/d_(t). As a result, compared with the CSTBT with the same turn-on loss(E_(on)), at I_(C) = 20 A/cm^(2), the proposed IGBT decreases by 35% of collector surge current(I_(surge)) and 52% of dI_(C)/d_(t).展开更多
二极管中点钳位NPC(neutral point clamped)三电平逆变器具备较低的开关应力、谐波分量和较好的抗干扰能力,促使其成为光伏、储能等新能源领域DC-AC变换器的主要拓扑之一。针对大功率应用场景中普遍采用的NPC三电平IGBT功率半导体模块...二极管中点钳位NPC(neutral point clamped)三电平逆变器具备较低的开关应力、谐波分量和较好的抗干扰能力,促使其成为光伏、储能等新能源领域DC-AC变换器的主要拓扑之一。针对大功率应用场景中普遍采用的NPC三电平IGBT功率半导体模块开展研究,分析NPC三电平功率模块的换流回路,并据此给出对应换流回路的寄生参数精准仿真评估方法。依据换流回路寄生参数最小原则,设计适用于NPC三电平功率半导体模块的动态特性测试电路。根据换流回路以及电路工作原理,设计NPC三电平功率模块的驱动电路,并给出增强驱动电流、防直通及死区时间可调的驱动方案。最后,通过对NPC三电平IGBT模块的动态测试,详细评估了不同工况下功率器件的动态损耗。展开更多
基金Project supported in part by the Science Foundation for Distinguished Young Scholars of Shaanxi Province,China(Grant No.2018JC-017)111 Project(Grant No.B12026)。
文摘A novel silicon carbide gate-controlled bipolar field effect composite transistor with poly silicon region(SiC GCBTP)is proposed.Different from the traditional electrode connection mode of SiC vertical diffused MOS(VDMOS),the P+region of P-well is connected with the gate in SiC GCBTP,and the polysilicon region is added between the P+region and the gate.By this method,additional minority carriers can be injected into the drift region at on-state,and the distribution of minority carriers in the drift region will be optimized,so the on-state current is increased.In terms of static characteristics,it has the same high breakdown voltage(811 V)as SiC VDMOS whose length of drift is 5.5μm.The on-state current of SiC GCBTP is 2.47×10^(-3)A/μm(V_(G)=10 V,V_(D)=10 V)which is 5.7 times of that of SiC IGBT and 36.4 times of that of SiC VDMOS.In terms of dynamic characteristics,the turn-on time of SiC GCBTP is only 0.425 ns.And the turn-off time of SiC GCBTP is similar to that of SIC insulated gate bipolar transistor(IGBT),which is 114.72 ns.
基金Supported by the National Key Research and Development Plan Program(No.2022YFB4701101)National Natural Science Foundation of Chi-na(No.U1913211)Natural Science Foundation of Hebei Province of China(No.F2021202062)。
文摘With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated guided vehicle(AGV)motor driver in port environment,and improves heat dissipation by analyzing and optimizing the core component of finned heat sink.Firstly,the temperature distribution of the initial scheme is studied by using Fluent software,and the heat transfer characteristics of the finned heat sink are obtained through numerical analysis.Secondly,an orthogonal test is designed and combined with the response surface methodology to optimize the structural parameters of the finned heat sink,resulting in a 14.57%increase in the heat dissipation effect.Finally,the effectiveness of heat dissipation enhancement is verified.This work provides valuable insights into improving the heat dissipation of IGBT modules and heat sinks,and provides guidance for their future applications.
基金Project supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ30738)Scientific Research Fund of Hunan Provincial Education Department(Grant No.19K001)Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering’s Open Fund Project-2020(Grant No.202016)。
文摘A novel 4H-Si C trench insulated gate bipolar transistor(IGBT)with a controllable hole-extracting(CHE)path is proposed and investigated in this paper.The CHE path is controlled by metal semiconductor gate(MES gate)and metal oxide semiconductor gate(MOS gate)in the p-shield region.The grounded p-shield region can significantly suppress the high electric field around gate oxide in Si C devices,but it weakens the conductivity modulation in the Si C trench IGBT by rapidly sweeping out holes.This effect can be eliminated by introducing the CHE path.The CHE path is pinched off by the high gate bias voltage at on-state to maintain high conductivity modulation and obtain a comparatively low on-state voltage(VON).During the turn-off transient,the CHE path is formed,which contributes to a decreased turn-off loss(EOFF).Based on numerical simulation,the EOFFof the proposed IGBT is reduced by 89%compared with the conventional IGBT at the same VONand the VONof the proposed IGBT is reduced by 50%compared to the grounded p-shield IGBT at the same EOFF.In addition,the average power reduction for the proposed device can be 51.0%to 81.7%and 58.2%to 72.1%with its counterparts at a wide frequency range of 500 Hz to 10 k Hz,revealing a great improvement of frequency characteristics.
基金Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ40161)the Natural Science Foundation of Changsha, China (Grant No. kq2202163)+1 种基金the National Natural Science Foundation of China (Grant No. U21A20499)the Fundamental Research Funds for the Central Universities, China (Grant No. 531118010735)。
文摘A novel trench insulated gate bipolar transistor(IGBT) with improved dynamic characteristics is proposed and investigated. The poly gate and poly emitter of the proposed IGBT are arranged alternately along the trench. A self-biased p-MOSFET is formed on the emitter side. Owing to this unique three-dimensional(3D) trench architecture, both the turnoff characteristic and the turn-on characteristic can be greatly improved. At the turn-off moment, the maximum electric field and impact ionization rate of the proposed IGBT decrease and the dynamic avalanche(DA) is suppressed. Comparing with the carrier-stored trench gate bipolar transistor(CSTBT), the turn-off loss(E_(off)) of the proposed IGBT also decreases by 31% at the same ON-state voltage. At the turn-on moment, the built-in p-MOSFET reduces the reverse displacement current(I_(G_dis)), which is conducive to lowing dI_(C)/d_(t). As a result, compared with the CSTBT with the same turn-on loss(E_(on)), at I_(C) = 20 A/cm^(2), the proposed IGBT decreases by 35% of collector surge current(I_(surge)) and 52% of dI_(C)/d_(t).
文摘二极管中点钳位NPC(neutral point clamped)三电平逆变器具备较低的开关应力、谐波分量和较好的抗干扰能力,促使其成为光伏、储能等新能源领域DC-AC变换器的主要拓扑之一。针对大功率应用场景中普遍采用的NPC三电平IGBT功率半导体模块开展研究,分析NPC三电平功率模块的换流回路,并据此给出对应换流回路的寄生参数精准仿真评估方法。依据换流回路寄生参数最小原则,设计适用于NPC三电平功率半导体模块的动态特性测试电路。根据换流回路以及电路工作原理,设计NPC三电平功率模块的驱动电路,并给出增强驱动电流、防直通及死区时间可调的驱动方案。最后,通过对NPC三电平IGBT模块的动态测试,详细评估了不同工况下功率器件的动态损耗。