期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Axonal remodeling in the corticospinal tract after stroke: how does rehabilitative training modulate it? 被引量:9
1
作者 Naohiko Okabe Kazuhiko Narita Osamu Miyamoto 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期185-192,共8页
Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstru... Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals. 展开更多
关键词 stroke rehabilitative training axonal remodeling corticospinal tract motor map reorganization motor system neurotrophic factor functional compensation neural activity growth promoting signal growth inhibitory signal task-specific training
下载PDF
Design of a Transverse-flux Permanent-magnet Linear Generator and Controller for Use with a Free-piston Stirling Engine 被引量:2
2
作者 ZHENG Jigui HUANG Yuping +1 位作者 WU Hongxing ZHENG Ping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期832-842,共11页
Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A nov... Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A novel type of cylindrical,non-overlapping,transverse-flux,and permanent-magnet linear motor(TFPLM) is investigated,furthermore,a high power factor and less process complexity structure research is developed.The impact of magnetic leakage factor on power factor is discussed,by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM,an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor.The relation between power factor and structure parameter is investigated,and a structure parameter optimization method is proposed taking power factor maximum as a goal.At last,the test bench is founded,starting experimental and generating experimental are performed,and a good agreement of simulation and experimental is achieved.The power factor is improved and the process complexity is decreased.This research provides the instruction to design high-power factor permanent-magnet linear generator. 展开更多
关键词 permanent-magnet linear motor(TFPLM) stirling engine magnetic leakage factor power factor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部