Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to ...Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.展开更多
The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the ...The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.展开更多
Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fa...Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring.展开更多
A linear quadric (LQ) optimal speed control algorithm is proposed for the speed control of a pump controlled motor hydraulic system. The control theme consists of optimal state feedback and disturbing compensation bas...A linear quadric (LQ) optimal speed control algorithm is proposed for the speed control of a pump controlled motor hydraulic system. The control theme consists of optimal state feedback and disturbing compensation based on observation. The optimal state feedback bases on LQ cost function. The disturbing compensation is realized through reconstructing the state of load torque. A series of simulation are performed, and the results show that the control performance is satisfactory and can be maintained under changes of load torque.展开更多
The main purpose of this paper is to design and model a water-pumping system using a submersible multi-stage centrifugal pump driven by a three-phase induction motor. The system is intended for pumping water to the su...The main purpose of this paper is to design and model a water-pumping system using a submersible multi-stage centrifugal pump driven by a three-phase induction motor. The system is intended for pumping water to the surface from a deep well using three power supply systems: a general network, a photo-voltaic (PV) system, and a PV system with a battery bank. These systems are used to compare two three-phase induction motors—namely, a motor with a drive and another one without a drive. The systems dynamic models are simulated in MATLAB/Simulink and the results compared with the manufacturer’s data for validation purposes. The simulation results generally show system dynamics and expected performance over a range of operation.展开更多
External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on ...External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on the vector equation of relative-motion velocity of the external return spherical hinge pair under the influence of external swash plate inclination and offset distance.The results show that the total friction,axial leakage flow,and maximum value of the maximum oil-film pressure increase with increasing pump-shaft speed and decrease with increasing offset distance in one working cycle when the external-swash-plate inclination is constant.However,the varying offset distance has little effect on the axial leakage flow.The maximum value of the maximum oil-film pressure decreases with increasing external-swash-plate inclination and the total leakage flow increases with increasing external-swash-plate inclination in one working cycle when the offset distance is constant.It can be seen that the abovementioned parameters are important factors that affect the lubrication characteristics of external return spherical hinge pairs.Therefore,the complex effects of different coupling parameters should be comprehensively considered in the design of the external return mechanism.展开更多
In the last few decades, several monitoring systems integrated with water level detection have been the major research focus. Production boost and its sustainability depend mainly on sustainable water supply, measurin...In the last few decades, several monitoring systems integrated with water level detection have been the major research focus. Production boost and its sustainability depend mainly on sustainable water supply, measuring water level, and avoiding waste of water is an essential task for all stakeholders. Therefore, the aim of this paper is to design and implement a mobile phone-based remote control. This will be applied to control the operation of a submersible motor in a water tank. The water level in the tank is detected and the device remotely turns the motor pump on/off. The design process is accomplished by developing an android application that works on GSM technology to manage the filling of water tank. An AT89C51 microcontroller is used for the desired programming. At the transmitting end, sensor is used for level detection and GSM module is used to send the information to user. According to this information, user controls the on/off operation of the pump. A SIM card is required for its operation and it works on attention (AT) commands. After the design and implementation of the device, the test results showed that all features of the device worked properly, and the device functions exactly as expected. More significantly, the paper has shown that ultrasonic sensors can be used to determine the level of water in a water tank and a GSM module can be used to control a submersible pump. The design and implementation of this device can help to reduce waste of time and power. Ultimately, it avoids water wastage thereby ensuring availability, conservation, and sustainability of water supply.展开更多
基金The Project Supported by Doctoral Programme Foundation of Institution of Higher Education
文摘Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.
文摘The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.
文摘Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring.
文摘A linear quadric (LQ) optimal speed control algorithm is proposed for the speed control of a pump controlled motor hydraulic system. The control theme consists of optimal state feedback and disturbing compensation based on observation. The optimal state feedback bases on LQ cost function. The disturbing compensation is realized through reconstructing the state of load torque. A series of simulation are performed, and the results show that the control performance is satisfactory and can be maintained under changes of load torque.
文摘The main purpose of this paper is to design and model a water-pumping system using a submersible multi-stage centrifugal pump driven by a three-phase induction motor. The system is intended for pumping water to the surface from a deep well using three power supply systems: a general network, a photo-voltaic (PV) system, and a PV system with a battery bank. These systems are used to compare two three-phase induction motors—namely, a motor with a drive and another one without a drive. The systems dynamic models are simulated in MATLAB/Simulink and the results compared with the manufacturer’s data for validation purposes. The simulation results generally show system dynamics and expected performance over a range of operation.
基金Project(GXXT-2019-048)supported by the University Synergy Innovation Program of Anhui Province,ChinaProject(51575002)supported by the National Natural Science Foundation of ChinaProject(gxbj ZD11)supported by the Top-Notch Talent Program of University(Profession)in Anhui Province,China。
文摘External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on the vector equation of relative-motion velocity of the external return spherical hinge pair under the influence of external swash plate inclination and offset distance.The results show that the total friction,axial leakage flow,and maximum value of the maximum oil-film pressure increase with increasing pump-shaft speed and decrease with increasing offset distance in one working cycle when the external-swash-plate inclination is constant.However,the varying offset distance has little effect on the axial leakage flow.The maximum value of the maximum oil-film pressure decreases with increasing external-swash-plate inclination and the total leakage flow increases with increasing external-swash-plate inclination in one working cycle when the offset distance is constant.It can be seen that the abovementioned parameters are important factors that affect the lubrication characteristics of external return spherical hinge pairs.Therefore,the complex effects of different coupling parameters should be comprehensively considered in the design of the external return mechanism.
文摘In the last few decades, several monitoring systems integrated with water level detection have been the major research focus. Production boost and its sustainability depend mainly on sustainable water supply, measuring water level, and avoiding waste of water is an essential task for all stakeholders. Therefore, the aim of this paper is to design and implement a mobile phone-based remote control. This will be applied to control the operation of a submersible motor in a water tank. The water level in the tank is detected and the device remotely turns the motor pump on/off. The design process is accomplished by developing an android application that works on GSM technology to manage the filling of water tank. An AT89C51 microcontroller is used for the desired programming. At the transmitting end, sensor is used for level detection and GSM module is used to send the information to user. According to this information, user controls the on/off operation of the pump. A SIM card is required for its operation and it works on attention (AT) commands. After the design and implementation of the device, the test results showed that all features of the device worked properly, and the device functions exactly as expected. More significantly, the paper has shown that ultrasonic sensors can be used to determine the level of water in a water tank and a GSM module can be used to control a submersible pump. The design and implementation of this device can help to reduce waste of time and power. Ultimately, it avoids water wastage thereby ensuring availability, conservation, and sustainability of water supply.