In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby...In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby limiting their performance.This paper aims to review the underlying mechanisms of how irregularly arranged Pinfins influence the thermal characteristics of power modules and introduce collaborative thermal design with DC bus capacitor and motor.Literature considers chip size,placement,coolant flow direction with the goal of reducing thermal resistance of power modules,minimizing chip junction temperature differentials,and optimizing Pinfin layouts.In the first step,algorithms should efficiently generating numerous unique irregular Pinfin layouts to enhance optimization quality.The second step is to efficiently evaluate Pinfin layouts.Simulation accuracy and speed should be ensured to improve computational efficiency.Finally,to improve overall heat dissipation effectiveness,papers establish models for capacitors,motors,to aid collaborative Pinfin optimization.These research outcomes will provide essential support for future developments in high power density motor drive for vehicles.展开更多
Here,we introduce a partitioned design method that is oriented toward airgap harmonic for permanent magnet vernier(PMV)motors.The method proposes the utilization of airgap flux harmonics as an effective bridge between...Here,we introduce a partitioned design method that is oriented toward airgap harmonic for permanent magnet vernier(PMV)motors.The method proposes the utilization of airgap flux harmonics as an effective bridge between the torque design region and the torque performances.To illustrate the efficacy of this method,a partitioned design PMV motor is presented and compared with the initial design.Firstly,the torque design region of the rotor is artfully divided into the torque enhancement region and ripple reduction region.Meanwhile,the main harmonics that generate output torque are chosen and enhanced,optimization.Moreover,the harmonics that generate torque ripple are selected and reduced based on torque harmonics optimization.Finally,the functions of the partitioned PMV motor torque are assessed based on the finite element method.By the purposeful design of these two regions,the output torque is strengthened while torque ripple is inhibited effectively,verifying the effectiveness and reasonability of the proposed design method.展开更多
Aiming at reducing the difficulty of cooling the interior of high-density motors,this study proposed the placement of a water cold plate cooling structure between the axial laminations of the motor stator.The effect o...Aiming at reducing the difficulty of cooling the interior of high-density motors,this study proposed the placement of a water cold plate cooling structure between the axial laminations of the motor stator.The effect of the cooling water flow,thickness of the plate,and motor loss density on the cooling effect of the water cold plate were studied.To compare the cooling performance of water cold plate and outer spiral water jacket cooling structures,a high-speed permanent magnet motor with a high loss density was used to establish two motor models with the two cooling structures.Consequently,the cooling effects of the two models were analyzed using the finite element method under the same loss density,coolant flow,and main dimensions.The results were as follows.(1)The maximum and average temperatures of the water cold plate structure were reduced by 25.5%and 30.5%,respectively,compared to that of the outer spiral water jacket motor;(2)Compared with the outer spiral water jacket structure,the water cold plate structure can reduce the overall mass and volume of the motor.Considering a 100 kW high-speed permanent magnet motor as an example,a water cold plate cooling system was designed,and the temperature distribution is analyzed,with the result indicating that the cooling structure satisfied the cooling requirements of the high loss density motor.展开更多
The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-ty...The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-type rotor,both existing as magnetless topologies.Three-phase squirrel cage induction motors are frequently utilized in industrial drives because they are dependable,have high starting torque,are selfstarting and affordable.Single-phase induction motors,on the other hand,are commonly used for small loads such as domestic appliances in form of modest fans,pumps and electric power tools.In South Africa,there have been reports of fires and explosions resulting in live and property loss because of induction motors that have not been thoroughly tested or are incorrectly labelled in terms of ratings,electrical safety and performance.The goal of this study is targeted at preventing end-user injuries and failures caused by non-compliant induction motors,by evaluating locally manufactured/imported induction motors based on tests and evaluation from standards(IEC and SANS).The study is conducted using experimental procedures at the Explosion Prevention Technology and Rotating Machines(EPT and RM)laboratory,South African Bureau of Standards(SABS),South Africa.The main finding from the study shows differences in the nameplate characteristics of various induction motors which could have detrimental effects such as production and operational downtime in their end-use industries,at later stages.展开更多
The performance characteristics,particularly the starting performance of direct line-fed induction motors,which are mainly influenced by the design of the rotor,are crucial considerations for end-users.It is quite a c...The performance characteristics,particularly the starting performance of direct line-fed induction motors,which are mainly influenced by the design of the rotor,are crucial considerations for end-users.It is quite a challenging issue for motor manufacturers to enhance the starting performance of existing mass-produced motors with minimal modifications and expenses.In this paper,a simple and cost-effective method to improve the starting performance of a commercial squirrel-cage induction motor(SCIM)is proposed.The influence of geometric parameters of the end-ring on the performance characteristics,including starting(locked rotor)torque,pull-up and break down torque,starting current,rotor electric parameters,current density,power losses,and efficiency have been comprehensively investigated.It has been revealed that among the other end-ring design parameters,the ring thickness has a significant effect on the performance characteristics.An optimal end-ring thickness is determined,and its performance characteristics have been compared to those of its initial counterpart.Numeric and parametric analyses have been conducted using a 2D time-stepping finite element method(FEM).The FEM results were validated using experimental measurements obtained from an 11 kW SCIM prototype.展开更多
This paper proposes a V-shaped permanent magnet vernier(V-PMV)motor for potential applications in direct drive system.By designing suitable pole slot ratio and adopting the V-shaped PM topology and dummy slots in roto...This paper proposes a V-shaped permanent magnet vernier(V-PMV)motor for potential applications in direct drive system.By designing suitable pole slot ratio and adopting the V-shaped PM topology and dummy slots in rotor,the flux leakage can be avoided effectively.Meanwhile,the high-order harmonics with large amplitude in the airgap magnetic field are fully utilized and served as the effective working harmonics,which aim at enhancing the output torque and reducing the torque ripple.Moreover,to extensively explore the performance advantages of the V-PMV motor,a multi-objective optimization study is carried out.And,the electromagnetic performances of the V-PMV motors are analyzed and compared in detail.Finally,a prototype machine is built and tested.Both theoretical analysis and experimental results verify the validity of the motor and multi-objective optimization design approach.展开更多
Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applicat...Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applications requiring linear motion.However,its use is not that popular which instigated an active interest in the evolution of newer LSRM configurations.Enhancement in its propulsion force along with the reduction in force ripples,weight,acoustic noise,and vibration have been the main objectives in recently proposed LSRM designs.In this paper,recently proposed LSRM designs are reviewed and analyzed.The paper presents a one-stop introduction and a complete update to the designs,both in terms of qualitative and quantitative parameters.In addition,it takes into account the challenges in the implementation of these designs.Based on a detailed comparison of these designs as presented in this paper,an appropriate design can be chosen for a given application.展开更多
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ...A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.展开更多
The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set betwee...The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set between the two stators make its design different, too. There are constraint satisfaction problems CSP) in the design. It is shown that the use GA offers a high rate of global convergence and the ability to get the optimal design of electromagnetic micro motors.展开更多
A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality an...A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality and one first order longitudinal mode of the stator. The three modes must satisfy some conditions. In our previous research, in order to satisfy these conditions, a parameter fitting design method is used. However, it is an experiential design method with low efficiency and costs much time, sometimes it even cannot find a desired solution. This paper puts forward an optimal design method for the stator. Based on the method, an optimization program is developed in MATLAB environment. Using the program, a new prototype of 3-DOF ultrasonic motor is designed. Its stator has diameter of 20 mm, height of 67 mm, and mass of 157 g. Experimental results show that the measured stators′ modal frequencies and modal shapes are in good consistent agreement with the results obtained by the optimal design program.展开更多
To improve the performance of the traditional fault-tolerant permanent magnet(PM)motor,the design and optimal schemes of dual-winding fault-tolerant permanent magnet motor(DWFT-PMM)are proposed and investigated.In ord...To improve the performance of the traditional fault-tolerant permanent magnet(PM)motor,the design and optimal schemes of dual-winding fault-tolerant permanent magnet motor(DWFT-PMM)are proposed and investigated.In order to obtain small cogging torque ripple and inhibiting the short-circuit current,the air gap surface shape of the PM and the anti short-circuits reactance parameters are designed and optimized.According to the actual design requirements of an aircraft electrical actuation system,the parameters,finite element analysis and experimental verification of the DWFT-PMM after optimal design are presented.The research results show that the optimized DWFT-PMM owns the merits of strong magnetic isolation,physics isolation,inhibiting the short circuit current,small cogging torque ripple and high fault tolerance.展开更多
On the basis of analysis of the present roofbolter’s structures, the pneumatic vane motor roofbolter was proposed and researched. Structure principle of MFT 80Y type pneumatic vane motor roofbolter was expounded, a n...On the basis of analysis of the present roofbolter’s structures, the pneumatic vane motor roofbolter was proposed and researched. Structure principle of MFT 80Y type pneumatic vane motor roofbolter was expounded, a new project of the rotary shearing mechanism with integrating pneumatic vane motor with epicyclic reduction gear unit was carried out, the mathematical model for optimum design of the rotary shearing mechanism was set up, and the optimum design for the rotary shearing mechanism was made by MATLAB Optimization Toolbox. Finally, performance of MFT 80 type pneumatic vane motor roofbolter made with optimum method and the on site experiment were introduced.展开更多
In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(R...In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(RSM).First,output torque,torque constant,torque ripple,and efficiency were selected as objective functions for the optimized design.The sampling method was implemented to use a mixed orthogonal array and the single response characteristics of each objective function were compared using the Taguchi method.Moreover,to consider the multi-response characteristic of the objective functions,WSM was applied.Second,the 2D finite element analysis result of the RSM was compared with that using the WSM.Finally,an experiment was carried out on the manufactured motor and the optimized model is presented here.展开更多
V-type ultrasonic linear motor fabricated using a simple punching technique was proposed to utilize as an actuator of small precision machine.The stator of the motor is composed of a thin elastic body and four ceramic...V-type ultrasonic linear motor fabricated using a simple punching technique was proposed to utilize as an actuator of small precision machine.The stator of the motor is composed of a thin elastic body and four ceramics attached to the upper and bottom areas of the body.The ceramics have each direction of polarization.When two harmonic voltages with a 90° phase difference are applied to the ceramics,symmetric and anti-symmetric displacements will generate at the tip to produce an elliptical motion.A finite element analysis(ATILA) was conducted to simulate the motion pattern for the contact tip of the stator.To develop a model that generates the maximum displacement at contact tip,the FEM program was used for various lengths.In addition,an optimal model was chosen by considering the magnitude and shape of the displacement according to changes in frequency.The maximum elliptical displacement is shown by W2L11 model,which has a ratio of ceramic width to length of 1:5.5.However,the displacement of the contact tip is reduced by the bucking phenomenon if the ratio is larger than 1:6.展开更多
A Particle Swarm Optimization (PSO) based design of three-phase induction motors are proposed. The induction motor design is treated as a non-linear and multivariable constrained optimization problem. The annual mater...A Particle Swarm Optimization (PSO) based design of three-phase induction motors are proposed. The induction motor design is treated as a non-linear and multivariable constrained optimization problem. The annual material cost and the total annual cost of the motor are chosen as two different objective functions. The PSO is used to find a set of optimal design variables of the motor which are then used to predict performance indices and the objective functions. The proposed method is demonstrated for two sample motors, and it is compared with the genetic algorithm (GA) and the conventional design methods. The results show that the PSO-based method effectively solved the induction motor design problems and outperforms the other methods in both the solution quality and computation efficiency.展开更多
This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finit...This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finite element calcula-tion. Then, the configuration yielding the best performances is integrated and modelled with the whole traction chain under MATLAB/SIMULINK environment in order to demonstrate the motor operation on a large speed band.展开更多
The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is ...The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is presented. The proposed approach is well suited to the design of controllers which must meet a set of conflicting performance specifications. Gain tuning is central to the design process, however, the tuning process is greatly simplified over that presented by the problem of tuning a PID controller for example. The proposed control method is applied to an AC induction motor, with an inner-loop flux vector controller applied to design a position control system. Experimental results verify the effectiveness of this method.展开更多
This paper presented the design and performance analysis of a 60kW interior permanent-magnet(IPM)synchronous motor used as traction drive in a medium commercial electric vehicle(EV),according to the traction requireme...This paper presented the design and performance analysis of a 60kW interior permanent-magnet(IPM)synchronous motor used as traction drive in a medium commercial electric vehicle(EV),according to the traction requirements of the electric vehicle under the rated operating conditions and overload conditions.The key dimensions were calculated on the basis of the permanent-magnet(PM)motor theory,and the 2D finite element method(FEM)simulation model of the IPM motor was built by using 2D Maxwell software.The influence geometric structures of the IPM motor including the PM dimensions and skewed PMs on electromagnetic torque were investigated,and the temperature distribution of the motor under rated operating condition and the condition of maximum speed were calculated.Finally,the simulation results of the IPM motor running in various operating modes were compared with the experimental results,which demonstrated that the designed IPM motor can match all requirements of the medium commercial electric vehicle driving applications.展开更多
基金supported in part by National Key R&D Program of China(2021YFB2500600),and in part by Chinese Academy of Sciences Youth multi-discipline project(JCTD-2021-09),and in part by Strategic Piority Research Program of Chinese Academy of Sciences(XDA28040100).
文摘In the current vehicle electric propulsion systems,the thermal design of power modules heavily relies on empirical knowledge,making it challenging to effectively optimize irregularly arranged Pinfin structures,thereby limiting their performance.This paper aims to review the underlying mechanisms of how irregularly arranged Pinfins influence the thermal characteristics of power modules and introduce collaborative thermal design with DC bus capacitor and motor.Literature considers chip size,placement,coolant flow direction with the goal of reducing thermal resistance of power modules,minimizing chip junction temperature differentials,and optimizing Pinfin layouts.In the first step,algorithms should efficiently generating numerous unique irregular Pinfin layouts to enhance optimization quality.The second step is to efficiently evaluate Pinfin layouts.Simulation accuracy and speed should be ensured to improve computational efficiency.Finally,to improve overall heat dissipation effectiveness,papers establish models for capacitors,motors,to aid collaborative Pinfin optimization.These research outcomes will provide essential support for future developments in high power density motor drive for vehicles.
基金supported in part by the Natural Science Foundation of China under Grant 51991385,Grant 52177046。
文摘Here,we introduce a partitioned design method that is oriented toward airgap harmonic for permanent magnet vernier(PMV)motors.The method proposes the utilization of airgap flux harmonics as an effective bridge between the torque design region and the torque performances.To illustrate the efficacy of this method,a partitioned design PMV motor is presented and compared with the initial design.Firstly,the torque design region of the rotor is artfully divided into the torque enhancement region and ripple reduction region.Meanwhile,the main harmonics that generate output torque are chosen and enhanced,optimization.Moreover,the harmonics that generate torque ripple are selected and reduced based on torque harmonics optimization.Finally,the functions of the partitioned PMV motor torque are assessed based on the finite element method.By the purposeful design of these two regions,the output torque is strengthened while torque ripple is inhibited effectively,verifying the effectiveness and reasonability of the proposed design method.
基金supported by the National Natural Science Foundation of China(51920105011)Natural Science Foundation of Liaoning Province(2021-YQ-09)Liaoning Bai Qian Wan Talents Program,China.
文摘Aiming at reducing the difficulty of cooling the interior of high-density motors,this study proposed the placement of a water cold plate cooling structure between the axial laminations of the motor stator.The effect of the cooling water flow,thickness of the plate,and motor loss density on the cooling effect of the water cold plate were studied.To compare the cooling performance of water cold plate and outer spiral water jacket cooling structures,a high-speed permanent magnet motor with a high loss density was used to establish two motor models with the two cooling structures.Consequently,the cooling effects of the two models were analyzed using the finite element method under the same loss density,coolant flow,and main dimensions.The results were as follows.(1)The maximum and average temperatures of the water cold plate structure were reduced by 25.5%and 30.5%,respectively,compared to that of the outer spiral water jacket motor;(2)Compared with the outer spiral water jacket structure,the water cold plate structure can reduce the overall mass and volume of the motor.Considering a 100 kW high-speed permanent magnet motor as an example,a water cold plate cooling system was designed,and the temperature distribution is analyzed,with the result indicating that the cooling structure satisfied the cooling requirements of the high loss density motor.
基金supported in part by Explosion Prevention Technology and Rotating Machines(EPT&RM)laboratory,South African Bureau of Standards(SABS),Pretoria,South Africa.
文摘The induction motor,which converts electrical energy into mechanical energy,has been recognized as the cornerstone of industrialization.The rotor of an induction motor can be either a squirrel cage rotor or a wound-type rotor,both existing as magnetless topologies.Three-phase squirrel cage induction motors are frequently utilized in industrial drives because they are dependable,have high starting torque,are selfstarting and affordable.Single-phase induction motors,on the other hand,are commonly used for small loads such as domestic appliances in form of modest fans,pumps and electric power tools.In South Africa,there have been reports of fires and explosions resulting in live and property loss because of induction motors that have not been thoroughly tested or are incorrectly labelled in terms of ratings,electrical safety and performance.The goal of this study is targeted at preventing end-user injuries and failures caused by non-compliant induction motors,by evaluating locally manufactured/imported induction motors based on tests and evaluation from standards(IEC and SANS).The study is conducted using experimental procedures at the Explosion Prevention Technology and Rotating Machines(EPT and RM)laboratory,South African Bureau of Standards(SABS),South Africa.The main finding from the study shows differences in the nameplate characteristics of various induction motors which could have detrimental effects such as production and operational downtime in their end-use industries,at later stages.
文摘The performance characteristics,particularly the starting performance of direct line-fed induction motors,which are mainly influenced by the design of the rotor,are crucial considerations for end-users.It is quite a challenging issue for motor manufacturers to enhance the starting performance of existing mass-produced motors with minimal modifications and expenses.In this paper,a simple and cost-effective method to improve the starting performance of a commercial squirrel-cage induction motor(SCIM)is proposed.The influence of geometric parameters of the end-ring on the performance characteristics,including starting(locked rotor)torque,pull-up and break down torque,starting current,rotor electric parameters,current density,power losses,and efficiency have been comprehensively investigated.It has been revealed that among the other end-ring design parameters,the ring thickness has a significant effect on the performance characteristics.An optimal end-ring thickness is determined,and its performance characteristics have been compared to those of its initial counterpart.Numeric and parametric analyses have been conducted using a 2D time-stepping finite element method(FEM).The FEM results were validated using experimental measurements obtained from an 11 kW SCIM prototype.
基金supported in part by the Natural Science Foundation of China under Grant 52177046,51991385,51807081 and 51937006in part by the China Postdoctoral Science Foundation under Project 2020T130256 and 2018M642178。
文摘This paper proposes a V-shaped permanent magnet vernier(V-PMV)motor for potential applications in direct drive system.By designing suitable pole slot ratio and adopting the V-shaped PM topology and dummy slots in rotor,the flux leakage can be avoided effectively.Meanwhile,the high-order harmonics with large amplitude in the airgap magnetic field are fully utilized and served as the effective working harmonics,which aim at enhancing the output torque and reducing the torque ripple.Moreover,to extensively explore the performance advantages of the V-PMV motor,a multi-objective optimization study is carried out.And,the electromagnetic performances of the V-PMV motors are analyzed and compared in detail.Finally,a prototype machine is built and tested.Both theoretical analysis and experimental results verify the validity of the motor and multi-objective optimization design approach.
基金Authors thank MANIT Bhopal and Ministry of Education,India for extending financial support for the research work.
文摘Linear switched reluctance motor(LSRM)and its applications in different industries have been an interesting research topic for the past few years.LSRMs have proved to be a suitable alternative in a variety of applications requiring linear motion.However,its use is not that popular which instigated an active interest in the evolution of newer LSRM configurations.Enhancement in its propulsion force along with the reduction in force ripples,weight,acoustic noise,and vibration have been the main objectives in recently proposed LSRM designs.In this paper,recently proposed LSRM designs are reviewed and analyzed.The paper presents a one-stop introduction and a complete update to the designs,both in terms of qualitative and quantitative parameters.In addition,it takes into account the challenges in the implementation of these designs.Based on a detailed comparison of these designs as presented in this paper,an appropriate design can be chosen for a given application.
基金Projects(51275235, 50975135) supported by the National Natural Science Foundation of ChinaProject(U0934004) supported by the Natural Science Foundation of Guangdong Province, ChinaProject(2011CB707602) supported by the National Basic Research Program of China
文摘A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.
文摘The genetic algorithm (GA) to the design of electromagnetic micro motor to optimize parameter design. Besides the different oversize from macro motor, the novel structure of micro motor which the rotor is set between the two stators make its design different, too. There are constraint satisfaction problems CSP) in the design. It is shown that the use GA offers a high rate of global convergence and the ability to get the optimal design of electromagnetic micro motors.
文摘A 3-DOF ultrasonic motor with a cylinder-shaped stator and a spherical rotor is developed. The motor provides 3-DOF rotation around x, y, and z-axes implemented by two second order bending modes with orthogonality and one first order longitudinal mode of the stator. The three modes must satisfy some conditions. In our previous research, in order to satisfy these conditions, a parameter fitting design method is used. However, it is an experiential design method with low efficiency and costs much time, sometimes it even cannot find a desired solution. This paper puts forward an optimal design method for the stator. Based on the method, an optimization program is developed in MATLAB environment. Using the program, a new prototype of 3-DOF ultrasonic motor is designed. Its stator has diameter of 20 mm, height of 67 mm, and mass of 157 g. Experimental results show that the measured stators′ modal frequencies and modal shapes are in good consistent agreement with the results obtained by the optimal design program.
基金This work was supported by the National Natural Science Foundation of China(51807094)the Fundamental Research Funds for the Central Universities(No.30918011327)and the Scientific Research Foundation of Nanjing University of Science and Technology(AE89991/036).
文摘To improve the performance of the traditional fault-tolerant permanent magnet(PM)motor,the design and optimal schemes of dual-winding fault-tolerant permanent magnet motor(DWFT-PMM)are proposed and investigated.In order to obtain small cogging torque ripple and inhibiting the short-circuit current,the air gap surface shape of the PM and the anti short-circuits reactance parameters are designed and optimized.According to the actual design requirements of an aircraft electrical actuation system,the parameters,finite element analysis and experimental verification of the DWFT-PMM after optimal design are presented.The research results show that the optimized DWFT-PMM owns the merits of strong magnetic isolation,physics isolation,inhibiting the short circuit current,small cogging torque ripple and high fault tolerance.
文摘On the basis of analysis of the present roofbolter’s structures, the pneumatic vane motor roofbolter was proposed and researched. Structure principle of MFT 80Y type pneumatic vane motor roofbolter was expounded, a new project of the rotary shearing mechanism with integrating pneumatic vane motor with epicyclic reduction gear unit was carried out, the mathematical model for optimum design of the rotary shearing mechanism was set up, and the optimum design for the rotary shearing mechanism was made by MATLAB Optimization Toolbox. Finally, performance of MFT 80 type pneumatic vane motor roofbolter made with optimum method and the on site experiment were introduced.
基金supported by the Industrial Strategic Technology Development Program(10070171,Development of core technology for advanced locomotion/manipulation based on high-speed/power robot platform and robot intelligence)funded By the Ministry of Trade,Industry&Energy(MI,Korea).
文摘In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(RSM).First,output torque,torque constant,torque ripple,and efficiency were selected as objective functions for the optimized design.The sampling method was implemented to use a mixed orthogonal array and the single response characteristics of each objective function were compared using the Taguchi method.Moreover,to consider the multi-response characteristic of the objective functions,WSM was applied.Second,the 2D finite element analysis result of the RSM was compared with that using the WSM.Finally,an experiment was carried out on the manufactured motor and the optimized model is presented here.
基金Project supported by the Second Stage of Brain Korea 21 ProjectProject(2009-0088570) supported by the National Research Foundation of Korea
文摘V-type ultrasonic linear motor fabricated using a simple punching technique was proposed to utilize as an actuator of small precision machine.The stator of the motor is composed of a thin elastic body and four ceramics attached to the upper and bottom areas of the body.The ceramics have each direction of polarization.When two harmonic voltages with a 90° phase difference are applied to the ceramics,symmetric and anti-symmetric displacements will generate at the tip to produce an elliptical motion.A finite element analysis(ATILA) was conducted to simulate the motion pattern for the contact tip of the stator.To develop a model that generates the maximum displacement at contact tip,the FEM program was used for various lengths.In addition,an optimal model was chosen by considering the magnitude and shape of the displacement according to changes in frequency.The maximum elliptical displacement is shown by W2L11 model,which has a ratio of ceramic width to length of 1:5.5.However,the displacement of the contact tip is reduced by the bucking phenomenon if the ratio is larger than 1:6.
文摘A Particle Swarm Optimization (PSO) based design of three-phase induction motors are proposed. The induction motor design is treated as a non-linear and multivariable constrained optimization problem. The annual material cost and the total annual cost of the motor are chosen as two different objective functions. The PSO is used to find a set of optimal design variables of the motor which are then used to predict performance indices and the objective functions. The proposed method is demonstrated for two sample motors, and it is compared with the genetic algorithm (GA) and the conventional design methods. The results show that the PSO-based method effectively solved the induction motor design problems and outperforms the other methods in both the solution quality and computation efficiency.
文摘This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finite element calcula-tion. Then, the configuration yielding the best performances is integrated and modelled with the whole traction chain under MATLAB/SIMULINK environment in order to demonstrate the motor operation on a large speed band.
文摘The application of a closed-loop specification oriented feedback control design method, which addresses the design of controllers to satisfy multiple simultaneous conflicting closed-loop performance specifications is presented. The proposed approach is well suited to the design of controllers which must meet a set of conflicting performance specifications. Gain tuning is central to the design process, however, the tuning process is greatly simplified over that presented by the problem of tuning a PID controller for example. The proposed control method is applied to an AC induction motor, with an inner-loop flux vector controller applied to design a position control system. Experimental results verify the effectiveness of this method.
基金This work was supported by the Research Funds for Central Universities under the grants of No.2018YJS161。
文摘This paper presented the design and performance analysis of a 60kW interior permanent-magnet(IPM)synchronous motor used as traction drive in a medium commercial electric vehicle(EV),according to the traction requirements of the electric vehicle under the rated operating conditions and overload conditions.The key dimensions were calculated on the basis of the permanent-magnet(PM)motor theory,and the 2D finite element method(FEM)simulation model of the IPM motor was built by using 2D Maxwell software.The influence geometric structures of the IPM motor including the PM dimensions and skewed PMs on electromagnetic torque were investigated,and the temperature distribution of the motor under rated operating condition and the condition of maximum speed were calculated.Finally,the simulation results of the IPM motor running in various operating modes were compared with the experimental results,which demonstrated that the designed IPM motor can match all requirements of the medium commercial electric vehicle driving applications.