In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommend...In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommended to determine the blast load on the structures via numerical simulation. Since the mesh size of the numerical model highly depends on the explosion scenario, there is no generally applicable approach for the mesh size selection. An efficient method to determine the mesh size of the numerical model of near-ground detonation based on explosion scenarios is proposed in this study. The effect of mesh size on the propagation of blast wave under different explosive weights was studied, and the correlations between the mesh size effect and the charge weight or the scaled distance was described. Based on the principle of the finite element method and Hopkinson-Cranz scaling law, a mesh size measurement unit related to the explosive weight was proposed as the criterion for determining the mesh size in the numerical simulation. Finally, the applicability of the method proposed in this paper was verified by comparing the results from numerical simulation and the explosion tests and was verified in AUTODYN.展开更多
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constra...A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied.展开更多
This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force...This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force/torque, whose limitation is analyzed andrevealed. The nonlinear factors and the servo valve dynamics have much influence on the systemcharacteristics. Subsequently a velocity syn-chronizing-compensation method by using the controlsignal of the control actuator is proposed, which can reduce the lagging effects for the betterperformance. For the reason of similarity between the model of control actuator and that of the loadsimulator, the proposed method performs well against the influence of nonlinear factors. Thesimulations and the experiments confirm that this control scheme results in a quick response,robustness, and excellent ability against disturbance.展开更多
Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults...Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults or weak zones can frequently arise in rock formations,presenting a significant challenge for engineering and potentially leading to underground engineering collapse.Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass.Therefore,a complete understanding of the behavior of rock bolts subjected to shear loads is essential.This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories:experiment,numerical simulation,and analytical model.The review focuses on the research studies and developments in this area since the 1970s,providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts.These factors include the diameter and angle of the rock bolt installation,rock strength,grouting material,bolt material,borehole diameter,rock bolt preload,normal stress,joint surface roughness and joint expansion angle.The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear.Furthermore,it delves into the optimization of the analytical model concerning rock bolt shear theory,approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods.The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts.The paper also highlights the limitations of current research and guidelines for further research of rock bolts.展开更多
The velocity feedback in a load simulator with a motor synchronizing in position is achieved by installing a tachometer generator between tile shaft and shell of the loading motor, and thes not only decreases the dist...The velocity feedback in a load simulator with a motor synchronizing in position is achieved by installing a tachometer generator between tile shaft and shell of the loading motor, and thes not only decreases the disturbance torque of tile load simlilator greatly but also improves its dynamic performance.展开更多
Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equ...Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equations is made up of the energy balance law and the Exner equations.The numerical solution for this complete system is done in a seg-regated manner.First,the hyperbolic part of the system of balance laws is solved using a finite volume scheme.Three ways to compute the numerical flux have been considered,the Q-scheme of van Leer,the HLLCS approximate Riemann solver,and the last one takes into account the presence of non-conservative products in the model.The discretisation of the source terms is carried out according to the numerical flux chosen.In the second stage,the bed conservation equation is solved by using the approximation computed for the system of balance laws.The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments.The numerical results show a good agreement with the experimental data.展开更多
Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering...Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering motor rapidly rotates, extra force is directly superimposed on the original static loading error, which becomes one of the main sources of the final error. It is key to achieve ELS precise loading control for the entire EPS test bench. Therefore, a three-part compound control algorithm is proposed to improve the loading accuracy. First, a fuzzy proportional–integral plus feedforward controller with force feedback is presented. Second, a friction compensation algorithm is established to reduce the influence of friction. Then, the relationships between each quantity and the extra force are analyzed when the steering motor rapidly rotates, and a net torque feedforward compensation algorithm is proposed to eliminate the extra force. The compound control algorithm was verified through simulations and experiments. The results show that the tracking performance of the compound control algorithm satisfies the demands of engineering practice, and the extra force in the ELS system can be suppressed by the net torque corresponding to the actuator’s acceleration.展开更多
In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,th...In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.展开更多
The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit...The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.展开更多
As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-crackin...As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.展开更多
The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte C...The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte Carlo simulation(MCS), so-called refined stochastic finite element method to investigate the random vibration of functionally graded material(FGM) plates subjected to the moving load.The advantage of the proposed method is to use r-FSDT to improve the accuracy of classical FSDT, satisfy the stress-free condition at the plate boundaries, and combine with MCS to analyze the vibration of the FGM plate when the parameter inputs are random quantities following a normal distribution. The obtained results show that the distribution characteristics of the vibration response of the FGM plate depend on the standard deviation of the input parameters and the velocity of the moving load.Furthermore, the numerical results in this study are expected to contribute to improving the understanding of FGM plates subjected to moving loads with uncertain input parameters.展开更多
To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according...To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.展开更多
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur...To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.展开更多
As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde...As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response.展开更多
The importance and necessity of emulating the federation load during simulating was analyzed firstly.Then,the special federation load emulation tool,federation load simulator (FLS),was designed and implemented,by whic...The importance and necessity of emulating the federation load during simulating was analyzed firstly.Then,the special federation load emulation tool,federation load simulator (FLS),was designed and implemented,by which all of the vital essential characteristics of a simulation could be tested,e.g.the amount of federates,the joint/resigned speed of federate,the amount of object instances,the registered/deleted speed of instance in one single program,etc..The applications proved that FLS could provide a convenient,effective and adjustable simulation load testing environment during the procedure of run-time infrastructure(RTI)and interrelated tool federates researching,developing and performance testing.Furthermore,the FLS utilized all kinds of resources with high efficiency.展开更多
On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the de...On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the development law and deformation property of axial force of pile body, shaft resistance of pile, and cumulative settlement of pile head under vertical cyclic dynamic loads were concluded. Through the comparison and analysis of the test results of dynamic models, the test results of Poulos(1989) and cumulative settlement model of the single pile under cyclic loads were confirmed. Based on the above research, Fortran language was adopted to introduce the soil attenuation factor, the secondary development of relevant modules of ABAQUS was carried out, and the effect of soil attenuation factor on dynamic property of pile-soil was discussed further.展开更多
High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation ba...High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.展开更多
High-speed train running in the sand environment is different from the general environment. In the former situation, there will be sand load applied on high-speed train(SLAHT) caused by sand particles hitting train su...High-speed train running in the sand environment is different from the general environment. In the former situation, there will be sand load applied on high-speed train(SLAHT) caused by sand particles hitting train surface. This will have a great impact on the train stability, running drag and surface corrosion. Numerical simulation method of SLAHT in sand environment is studied. The velocity and mass flow rate models of saltation and suspension sand particles and the calculation model of SLAHT caused by sand particles hitting train surface are established. The discrete phase method is adopted for numerical simulating the process of saltation and suspension sand particles moving to train surface and generating sand load. By comparison with the field tests, the numerical simulation reliability is analysed. The theoretical formula of SLAHT changing with cross-wind and train speed is proposed. SLAHT changing law is analyzed. Research results indicate that SLAHT changing with cross-wind and train speed is a quadratic relationship. When train speed is constant, SLAHT increases quadratically with cross-wind speed improvement. When cross-wind speed is constant, SLAHT increases quadratically with train speed improvement.展开更多
The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at t...The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at the mesoscopic scale, such as loading frequency, stress amplitude, mean stress, confining pressure and loading sequence, are also investigated with sinusoidal waveform in detail. The related numerical results have demonstrated that: 1) the loading waveform has a certain effect on rock failure processes. The square waveform has the most damage within these waveforms, while the triangle waveform has less damage than sinusoidal waveform. In each cycle, the number of microscopic cracks increases in the loading stage, while it keeps nearly constant in the unloading stage. 2) The loading frequency, stress amplitude, mean stress, confining pressure and loading sequence have considerable effects on rock damage subjected to cyclic loading. The higher the loading frequency, stress amplitude and mean stress, the greater the damage the rock accumulated; in contrast, the lower the confining pressure, the greater the damage the rock has accumulated. 3) There is a threshold value of mean stress and stress amplitude, below which no further damage accumulated after the first few cycle loadings. 4) The high-to-low loading sequence has more damage than the low-to-high loading sequence, suggesting that the rock damage is loading-path dependent.展开更多
基金the funding supports of the National Key Research and Development Plan,China(Grant No.2022YFC3801800)National Natural Science Foundation of China(Grant Nos.52038010 and 52078368)。
文摘In order to improve the overall resilience of the urban infrastructures, it is required to conduct blast resistant design for important building structures in the city. For complex terrain in the city, it is recommended to determine the blast load on the structures via numerical simulation. Since the mesh size of the numerical model highly depends on the explosion scenario, there is no generally applicable approach for the mesh size selection. An efficient method to determine the mesh size of the numerical model of near-ground detonation based on explosion scenarios is proposed in this study. The effect of mesh size on the propagation of blast wave under different explosive weights was studied, and the correlations between the mesh size effect and the charge weight or the scaled distance was described. Based on the principle of the finite element method and Hopkinson-Cranz scaling law, a mesh size measurement unit related to the explosive weight was proposed as the criterion for determining the mesh size in the numerical simulation. Finally, the applicability of the method proposed in this paper was verified by comparing the results from numerical simulation and the explosion tests and was verified in AUTODYN.
基金funded partially by the Australian Government through the Australian Research Council’s Linkage Infrastructure,Equipment and Facilities (LIEF)funding scheme (LE130100133)。
文摘A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied.
文摘This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force/torque, whose limitation is analyzed andrevealed. The nonlinear factors and the servo valve dynamics have much influence on the systemcharacteristics. Subsequently a velocity syn-chronizing-compensation method by using the controlsignal of the control actuator is proposed, which can reduce the lagging effects for the betterperformance. For the reason of similarity between the model of control actuator and that of the loadsimulator, the proposed method performs well against the influence of nonlinear factors. Thesimulations and the experiments confirm that this control scheme results in a quick response,robustness, and excellent ability against disturbance.
基金The Project(52174101)supported by the National Natural Science Foundation of ChinaThe Project(2023A1515011634)supported by Guangdong Basic and Applied Basic Research Foundation.
文摘Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults or weak zones can frequently arise in rock formations,presenting a significant challenge for engineering and potentially leading to underground engineering collapse.Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass.Therefore,a complete understanding of the behavior of rock bolts subjected to shear loads is essential.This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories:experiment,numerical simulation,and analytical model.The review focuses on the research studies and developments in this area since the 1970s,providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts.These factors include the diameter and angle of the rock bolt installation,rock strength,grouting material,bolt material,borehole diameter,rock bolt preload,normal stress,joint surface roughness and joint expansion angle.The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear.Furthermore,it delves into the optimization of the analytical model concerning rock bolt shear theory,approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods.The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts.The paper also highlights the limitations of current research and guidelines for further research of rock bolts.
文摘The velocity feedback in a load simulator with a motor synchronizing in position is achieved by installing a tachometer generator between tile shaft and shell of the loading motor, and thes not only decreases the disturbance torque of tile load simlilator greatly but also improves its dynamic performance.
基金supported by the Spanish MICINN project MTM2013-43745-R and MTM2017-86459-Rthe Xunta de Galicia+1 种基金the FEDER under research project ED431C 2017/60-014supported by PRODEP project UAM-PTC-669
文摘Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equations is made up of the energy balance law and the Exner equations.The numerical solution for this complete system is done in a seg-regated manner.First,the hyperbolic part of the system of balance laws is solved using a finite volume scheme.Three ways to compute the numerical flux have been considered,the Q-scheme of van Leer,the HLLCS approximate Riemann solver,and the last one takes into account the presence of non-conservative products in the model.The discretisation of the source terms is carried out according to the numerical flux chosen.In the second stage,the bed conservation equation is solved by using the approximation computed for the system of balance laws.The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments.The numerical results show a good agreement with the experimental data.
基金Supported by National Natural Science Foundation of China (Grant No. 51505178)China Postdoctoral Science Foundation (Grant No. 2014M561289)。
文摘Electric load simulator(ELS) systems are employed for electric power steering(EPS) test benches to load rack force by precise control. Precise ELS control is strongly influenced by nonlinear factors. When the steering motor rapidly rotates, extra force is directly superimposed on the original static loading error, which becomes one of the main sources of the final error. It is key to achieve ELS precise loading control for the entire EPS test bench. Therefore, a three-part compound control algorithm is proposed to improve the loading accuracy. First, a fuzzy proportional–integral plus feedforward controller with force feedback is presented. Second, a friction compensation algorithm is established to reduce the influence of friction. Then, the relationships between each quantity and the extra force are analyzed when the steering motor rapidly rotates, and a net torque feedforward compensation algorithm is proposed to eliminate the extra force. The compound control algorithm was verified through simulations and experiments. The results show that the tracking performance of the compound control algorithm satisfies the demands of engineering practice, and the extra force in the ELS system can be suppressed by the net torque corresponding to the actuator’s acceleration.
基金Youth Talent Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKZ0270)Youth Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKQZ2021055).
文摘In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Found of Jiangsu Province(Grant No.BK20221389)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society.
文摘The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.
基金supported by the Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management (Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China (Grant No.11802160)。
文摘As the protective component,steel plate had attracted extensive attention because of frequently threats of explosive loads.In this paper,the evolution of microstructure and the mechanism of damage in the quasi-cracking area of steel plate subjected to explosive load were discussed and the relationships between micro defects and dynamic mechanical response were revealed.After the explosion experiment,five observation points were selected equidistant from the quasi-cracking area of the section of the steel plate along the thickness direction,and the characteristics of micro defects at the observation points were analyzed by optical microscope(OM),scanning electron microscope(SEM) and electron backscattered diffraction(EBSD).The observation result shows that many slip bands(SBs) appeared,and the grain orientation changed obviously in the steel plate,the two were the main damage types of micro defects.In addition,cracks,peeling pits,grooves and other lager micro defects were appeared in the lower area of the plate.The stress parameters of the observation points were obtained through an effective numerical model.The mechanism of damage generation and crack propagation in the quasicracking area were clarified by comparing the specific impulse of each observation point with the corresponding micro defects.The result shows that the generation and expansion of micro defects are related to the stress area(i.e.the upper compression area,the neutral plane area,and the lower tension area).The micro defects gather and expand at the grain boundary,and will become macroscopic damage under the continuous action of tensile stress.Besides,the micro defects at the midpoint of the section of the steel plate in the direction away from the explosion center(i.e.the horizontal direction) were also studied.It was found that the specific impulse at these positions were much smaller than that in the thickness direction,the micro defects were only SBs and a few micro cracks,and the those decreased with the increase of the distance from the explosion center.
文摘The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte Carlo simulation(MCS), so-called refined stochastic finite element method to investigate the random vibration of functionally graded material(FGM) plates subjected to the moving load.The advantage of the proposed method is to use r-FSDT to improve the accuracy of classical FSDT, satisfy the stress-free condition at the plate boundaries, and combine with MCS to analyze the vibration of the FGM plate when the parameter inputs are random quantities following a normal distribution. The obtained results show that the distribution characteristics of the vibration response of the FGM plate depend on the standard deviation of the input parameters and the velocity of the moving load.Furthermore, the numerical results in this study are expected to contribute to improving the understanding of FGM plates subjected to moving loads with uncertain input parameters.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFC2903901)Enlisting and Leading Project of the Key Scientific and Technological Innovation in Heilongjiang Province,China(Grant No.2021ZXJ02A03,04)the North China University of Water Resources and Electric Power Launch Fund for High-level Talents Research(Grant No.40937).
文摘To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200494)China Postdoctoral Science Foundation(Grant No.2021M701725)+3 种基金Jiangsu Postdoctoral Research Funding Program(Grant No.2021K522C)Fundamental Research Funds for the Central Universities(Grant No.30919011246)National Natural Science Foundation of China(Grant No.52278188)Natural Science Foundation of Jiangsu Province(Grant No.BK20211196)。
文摘To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.
基金Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management(Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China(Grant No.11802160).
文摘As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response.
文摘The importance and necessity of emulating the federation load during simulating was analyzed firstly.Then,the special federation load emulation tool,federation load simulator (FLS),was designed and implemented,by which all of the vital essential characteristics of a simulation could be tested,e.g.the amount of federates,the joint/resigned speed of federate,the amount of object instances,the registered/deleted speed of instance in one single program,etc..The applications proved that FLS could provide a convenient,effective and adjustable simulation load testing environment during the procedure of run-time infrastructure(RTI)and interrelated tool federates researching,developing and performance testing.Furthermore,the FLS utilized all kinds of resources with high efficiency.
基金Projects(51478178,51508181) supported by the National Natural Science Foundation of China
文摘On the basis of the two dimensional finite element analysis model, the pile foundations' mechanical effect of the rigid pile composite foundation under the dynamic load was researched. Through the research, the development law and deformation property of axial force of pile body, shaft resistance of pile, and cumulative settlement of pile head under vertical cyclic dynamic loads were concluded. Through the comparison and analysis of the test results of dynamic models, the test results of Poulos(1989) and cumulative settlement model of the single pile under cyclic loads were confirmed. Based on the above research, Fortran language was adopted to introduce the soil attenuation factor, the secondary development of relevant modules of ABAQUS was carried out, and the effect of soil attenuation factor on dynamic property of pile-soil was discussed further.
基金supported by National Science and Technology Support Program of China (Grant No. 2012BAF15G00)
文摘High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.
文摘High-speed train running in the sand environment is different from the general environment. In the former situation, there will be sand load applied on high-speed train(SLAHT) caused by sand particles hitting train surface. This will have a great impact on the train stability, running drag and surface corrosion. Numerical simulation method of SLAHT in sand environment is studied. The velocity and mass flow rate models of saltation and suspension sand particles and the calculation model of SLAHT caused by sand particles hitting train surface are established. The discrete phase method is adopted for numerical simulating the process of saltation and suspension sand particles moving to train surface and generating sand load. By comparison with the field tests, the numerical simulation reliability is analysed. The theoretical formula of SLAHT changing with cross-wind and train speed is proposed. SLAHT changing law is analyzed. Research results indicate that SLAHT changing with cross-wind and train speed is a quadratic relationship. When train speed is constant, SLAHT increases quadratically with cross-wind speed improvement. When cross-wind speed is constant, SLAHT increases quadratically with train speed improvement.
基金Projects(11702235,51641905,41472269) supported by the National Natural Science Foundation of ChinaProject(2017JJ3290) supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(17C1540) supported by the Scientific Research Foundation of Education Department of Hunan Province,ChinaProject(16GES07) supported by the Open Research Fund of Hunan Key Laboratory of Geomechanics and Engineering Safety,China
文摘The particle simulation method is used to study the effects of loading waveforms (i.e. square, sinusoidal and triangle waveforms) on rock damage at mesoscopic scale. Then some influencing factors on rock damage at the mesoscopic scale, such as loading frequency, stress amplitude, mean stress, confining pressure and loading sequence, are also investigated with sinusoidal waveform in detail. The related numerical results have demonstrated that: 1) the loading waveform has a certain effect on rock failure processes. The square waveform has the most damage within these waveforms, while the triangle waveform has less damage than sinusoidal waveform. In each cycle, the number of microscopic cracks increases in the loading stage, while it keeps nearly constant in the unloading stage. 2) The loading frequency, stress amplitude, mean stress, confining pressure and loading sequence have considerable effects on rock damage subjected to cyclic loading. The higher the loading frequency, stress amplitude and mean stress, the greater the damage the rock accumulated; in contrast, the lower the confining pressure, the greater the damage the rock has accumulated. 3) There is a threshold value of mean stress and stress amplitude, below which no further damage accumulated after the first few cycle loadings. 4) The high-to-low loading sequence has more damage than the low-to-high loading sequence, suggesting that the rock damage is loading-path dependent.