On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches i...On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.展开更多
This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First...This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.展开更多
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos...To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.展开更多
High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high prec...High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented.展开更多
As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model; furthermore, modifies bearin...As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model; furthermore, modifies bearing radial stiffness and number of model and studies the change of modal parameters. On this basis, through the harmonic response analysis of the finite element model, dy- namic response characteristic caused by imbalance of monitored spindle system and law of vibration response to different amount of unbalance is analyzed.展开更多
The high-speed motorized spindle, as the key component of machining centers and other high-end CNC machine tools, has performance directly affecting machining accuracy. According to the internal motor character- istic...The high-speed motorized spindle, as the key component of machining centers and other high-end CNC machine tools, has performance directly affecting machining accuracy. According to the internal motor character- istics of the high speed motorized spindle in the paper, two major heat sources are analyzed and quantity of heat is calculated. The finite element analysis model of motorized spindle thermal characteristics is built through ap- plying the ANSYS Workbench. The thermal steady state, heat-structure coupling characteristics is carried out based on the cooling coefficient of thermal boundary conditions, and taking heating value of the bearing and mo- tor as thermal load, the temperature field distribution and thermal deformation of the spindle system are obtained, which prepare fox" the next thermal error modeling展开更多
In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor s...In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.展开更多
The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to ana...The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness, and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.展开更多
Fluid film bearings are widely used as support elements of rotating shaft for HDD (hard disk drive) spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increas...Fluid film bearings are widely used as support elements of rotating shaft for HDD (hard disk drive) spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipments such as mobile PCs, car navigation systems. Hence, the rotating shaft has a possibility to come in contact with the bearing and it causes wear or seizure to the bearing surface. In order to avoid the problems, it is extremely important to enhance the dynamic characteristics of the fluid film bearings for spindles. However, verification from both theory and experiment of dynamic characteristics such as spring coefficients and damping coefficients is rare and few. In this paper, the bearing vibration characteristics when the HDD spindle is oscillated are investigated theoretically and experimentally. And then the identification method ofoil film coefficients of fluid film bearing spindles is described.展开更多
This paper describes the experimental study on shock response of FDB (fluid dynamic bearing) spindle for HDDs (hard disk drives). The FDBs are widely used as rotating shaft support elements for HDD spindle motors....This paper describes the experimental study on shock response of FDB (fluid dynamic bearing) spindle for HDDs (hard disk drives). The FDBs are widely used as rotating shaft support elements for HDD spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipment such as mobile PCs (personal computers), video cameras, car navigation systems and so on. Hence, the rotating shaft has a possibility to come in contact with the bearing by external shocks and it causes wear or seizure to the bearing surface. To avoid the problem, it is extremely important to know how the spindle moves against the large shock on HDDs experimentally. However, as far as the authors know, there are few experimental studies treating the shock response of HDD spindles. In this paper, firstly, we propose a new test rig and experimental method for shock response of FDB spindles. Then the shock tests against the radial and axial disturbance on FDB spindle for 2.5" HDD are conducted. Finally, the experimental results of shock response waveforms and maximum displacement of disk are shown.展开更多
The severe internal heat generation of the motorized spindle system causes uneven temperature dis- tribution, and will affect the vibration characteristics of the system. Based on the thermal analysis about the motori...The severe internal heat generation of the motorized spindle system causes uneven temperature dis- tribution, and will affect the vibration characteristics of the system. Based on the thermal analysis about the motorized spindle by finite element method (FEM), the thermal deformations of the spindle system are calculated by the thermal structure coupling simulation, and the thermal deformations of the rotor and the bearing units are extracted to analyze the bearing stiffness changes so that the modal characteristics of the rotor can be simulated in different thermal state conditions. And then the rotor thermal deformation experiment and the modal experiment of spindle by exciting with hammer are performed. The result shows that the thermal state of the motorized spindle system has a significant influence on the natural frequency of the rotor, which can be carefully treated when a spindle system is designed.展开更多
In the motorized spindle system of a computer numerical control (CNC) machine tool, internal heat sources are formed during high-speed rotation;these cause thermal errors and affect the machining accuracy. To address ...In the motorized spindle system of a computer numerical control (CNC) machine tool, internal heat sources are formed during high-speed rotation;these cause thermal errors and affect the machining accuracy. To address this problem, in this study, a thermal resistance network model of the motorized spindle system is established based on the heat transfer theory. The heat balance equations of the critical thermal nodes are established according to this model with Kirchhoffs law. Then, they are solved using the Newmark-β method to obtain the temperature of each main component, and steady thermal analysis and transient thermal analysis of the motorized spindle system are performed. In order to obtain accurate thermal characteristics of the spindle system, the thermal conduction resistance of each component and the thermalconvection resistance between the cooling system and the components of the spindle system are accurately obtained considering the effect of the heat exchanger on the temperature of the coolant in the cooling system. Simultaneously, high-precision magnetic temperature sensors are used to detect the temperature variation of the spindle in the CNC machining center at different rotational speeds. The experimental results demonstrate that the thermal resistance network model can predict the temperature field distribution in the spindle system with reasonable accuracy. In addition, the influences of the rotational speed and cooling conditions on the temperature increase of the main components of the spindle system are analyzed. Finally, a few recommendations are provided to improve the thermal performance of the spindle system under different operational conditions.展开更多
基金National Hi-tech Research and Development Program of China(863 Program,No.2008AA04Z116)and Natural Science Foundation of Hunan Province,China.
文摘On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.
文摘This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.
基金The National Natural Science Foundation of China(No.51465035)the Natural Science Foundation of Gansu,China(No.20JR5R-A466)。
文摘To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.
文摘High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented.
基金Special Topic of the Ministry of Education about Humanities and Social Sciences(12JDGC007)National Science and Technology Support Project(2011BAF09B01)Key State Science and Technology Projects(2009ZX04010-021)
文摘As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model; furthermore, modifies bearing radial stiffness and number of model and studies the change of modal parameters. On this basis, through the harmonic response analysis of the finite element model, dy- namic response characteristic caused by imbalance of monitored spindle system and law of vibration response to different amount of unbalance is analyzed.
文摘The high-speed motorized spindle, as the key component of machining centers and other high-end CNC machine tools, has performance directly affecting machining accuracy. According to the internal motor character- istics of the high speed motorized spindle in the paper, two major heat sources are analyzed and quantity of heat is calculated. The finite element analysis model of motorized spindle thermal characteristics is built through ap- plying the ANSYS Workbench. The thermal steady state, heat-structure coupling characteristics is carried out based on the cooling coefficient of thermal boundary conditions, and taking heating value of the bearing and mo- tor as thermal load, the temperature field distribution and thermal deformation of the spindle system are obtained, which prepare fox" the next thermal error modeling
基金supported by the National Natural Science Funds of China No.51907129Technology program of Liaoning province No.2021-MS-236。
文摘In this paper,a 20kW vehicle built-in permanent magnet synchronous motor is taken as an example,and a magnetic barrier structure is added to the rotor of the motor to solve the uneven saturation problem of the rotor side magnetic bridge.This structure improves the air-gap flux density waveform of the motor by influencing the internal magnetic flux path of the motor rotor,thus improving the sine of the no-load back EMF waveform of the motor and reducing the torque ripple of the motor.At the same time,Taguchi method is used to optimize the structural parameters of the added magnetic barrier.In order to facilitate the analysis of its uneven saturation phenomenon and improve the optimization effect,a simple equivalent magnetic network(EMN)model considering the uneven saturation of rotor magnetic bridge is established in this paper,and the initial values of optimization factors are selected based on this model.Finally,the no-load back EMF waveform distortion rate,torque ripple and output torque of the optimized motor are compared and analyzed,and the influence of magnetic barrier structure parameters on the electromagnetic performance of the motor is also analyzed.The results show that the optimized motor can not change the output torque of the motor as much as possible on the basis of reducing the waveform distortion rate of no-load back EMF and torque ripple.
文摘The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness, and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.
文摘Fluid film bearings are widely used as support elements of rotating shaft for HDD (hard disk drive) spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipments such as mobile PCs, car navigation systems. Hence, the rotating shaft has a possibility to come in contact with the bearing and it causes wear or seizure to the bearing surface. In order to avoid the problems, it is extremely important to enhance the dynamic characteristics of the fluid film bearings for spindles. However, verification from both theory and experiment of dynamic characteristics such as spring coefficients and damping coefficients is rare and few. In this paper, the bearing vibration characteristics when the HDD spindle is oscillated are investigated theoretically and experimentally. And then the identification method ofoil film coefficients of fluid film bearing spindles is described.
文摘This paper describes the experimental study on shock response of FDB (fluid dynamic bearing) spindle for HDDs (hard disk drives). The FDBs are widely used as rotating shaft support elements for HDD spindle motors. Recently, the opportunity for the HDD spindle motors exposed to external vibration has been increasing because the HDDs are used for various information related equipment such as mobile PCs (personal computers), video cameras, car navigation systems and so on. Hence, the rotating shaft has a possibility to come in contact with the bearing by external shocks and it causes wear or seizure to the bearing surface. To avoid the problem, it is extremely important to know how the spindle moves against the large shock on HDDs experimentally. However, as far as the authors know, there are few experimental studies treating the shock response of HDD spindles. In this paper, firstly, we propose a new test rig and experimental method for shock response of FDB spindles. Then the shock tests against the radial and axial disturbance on FDB spindle for 2.5" HDD are conducted. Finally, the experimental results of shock response waveforms and maximum displacement of disk are shown.
文摘The severe internal heat generation of the motorized spindle system causes uneven temperature dis- tribution, and will affect the vibration characteristics of the system. Based on the thermal analysis about the motorized spindle by finite element method (FEM), the thermal deformations of the spindle system are calculated by the thermal structure coupling simulation, and the thermal deformations of the rotor and the bearing units are extracted to analyze the bearing stiffness changes so that the modal characteristics of the rotor can be simulated in different thermal state conditions. And then the rotor thermal deformation experiment and the modal experiment of spindle by exciting with hammer are performed. The result shows that the thermal state of the motorized spindle system has a significant influence on the natural frequency of the rotor, which can be carefully treated when a spindle system is designed.
基金National Natural Science Foundation of China (Grant No. 51875093)Fundamental Research Funds for the Central Universities from Ministry of Education of China (Grant Nos. N140304005 and N160313003)National Science Foundation for Postdoctoral Scientists of China (Grant Nos. 2014M551105 and 2015T80269).
文摘In the motorized spindle system of a computer numerical control (CNC) machine tool, internal heat sources are formed during high-speed rotation;these cause thermal errors and affect the machining accuracy. To address this problem, in this study, a thermal resistance network model of the motorized spindle system is established based on the heat transfer theory. The heat balance equations of the critical thermal nodes are established according to this model with Kirchhoffs law. Then, they are solved using the Newmark-β method to obtain the temperature of each main component, and steady thermal analysis and transient thermal analysis of the motorized spindle system are performed. In order to obtain accurate thermal characteristics of the spindle system, the thermal conduction resistance of each component and the thermalconvection resistance between the cooling system and the components of the spindle system are accurately obtained considering the effect of the heat exchanger on the temperature of the coolant in the cooling system. Simultaneously, high-precision magnetic temperature sensors are used to detect the temperature variation of the spindle in the CNC machining center at different rotational speeds. The experimental results demonstrate that the thermal resistance network model can predict the temperature field distribution in the spindle system with reasonable accuracy. In addition, the influences of the rotational speed and cooling conditions on the temperature increase of the main components of the spindle system are analyzed. Finally, a few recommendations are provided to improve the thermal performance of the spindle system under different operational conditions.