Presents the conception of concurrent engineering employed for CAD/CAM of injection moulds by closely combining the management science with the manufacturing techniques with the cost of processing, material cost, etc ...Presents the conception of concurrent engineering employed for CAD/CAM of injection moulds by closely combining the management science with the manufacturing techniques with the cost of processing, material cost, etc taken into consideration from the conceptural design to delivery of products and concludes with the results of analyses that the cost of finished plastic parts is lower, the production efficiency is higher while energy is saved.展开更多
A CAD approach which can optimize and automate the parting direction determination is presented. The approach is based on the geometrical and topological information of the solid modelling of the plastic moulded part ...A CAD approach which can optimize and automate the parting direction determination is presented. The approach is based on the geometrical and topological information of the solid modelling of the plastic moulded part in order to select a pair of optimal parting directions of a two plate mould which minimizes the number of side cores. The shell of a part is divided into inter influential regions and non influential faces in the mould design point of view. Through analyzing and computing the accessibility direction cones of the inter influential regions, the optimal parting directions can be determined automatically.展开更多
文摘Presents the conception of concurrent engineering employed for CAD/CAM of injection moulds by closely combining the management science with the manufacturing techniques with the cost of processing, material cost, etc taken into consideration from the conceptural design to delivery of products and concludes with the results of analyses that the cost of finished plastic parts is lower, the production efficiency is higher while energy is saved.
文摘A CAD approach which can optimize and automate the parting direction determination is presented. The approach is based on the geometrical and topological information of the solid modelling of the plastic moulded part in order to select a pair of optimal parting directions of a two plate mould which minimizes the number of side cores. The shell of a part is divided into inter influential regions and non influential faces in the mould design point of view. Through analyzing and computing the accessibility direction cones of the inter influential regions, the optimal parting directions can be determined automatically.