Effects of the mixture of β-ecdysone and polypodine -B (2 : 1 W/W) on the moulting and growth of prawn, Penaeus orientaliss were studied in laboratory by rearing the animal with the added compound diets. The results ...Effects of the mixture of β-ecdysone and polypodine -B (2 : 1 W/W) on the moulting and growth of prawn, Penaeus orientaliss were studied in laboratory by rearing the animal with the added compound diets. The results showed that the addition of the moulting hormone (M. H) mixture to compound diets, from 1. 33× 10-6 to 30×10-6, could increase moulting activity and growth rate of the prawn to different extents, among which the 5. 33× 10-6-10. 67×10-6addition had statistically significant effects. However, 60 × 10-6 added diets caused moulting and growth inhibitions and cuticle thickening. The analyses of protein, water and ash contents of the prawn showed no remarkable differences between hormone dosed animals and the control.展开更多
Growth in arthropods in general and in insects in particular, is supposed to be discontinuous and occurs during moulting. In Culicidae in general and <i> <i><span style="font-family:Verdana;"&...Growth in arthropods in general and in insects in particular, is supposed to be discontinuous and occurs during moulting. In Culicidae in general and <i> <i><span style="font-family:Verdana;">Anopheles</span></i></i><span style="font-family:Verdana;"> in particular, the number of moults is five with the fourth which gives the pupae. It is known that moulting in insects is a genetic and physio</span><span><span style="font-family:Verdana;">logical phenomenon. Most physiological reactions are triggered by chemical or physical stimuli. The pressure exerted by the growth of the larval body on the exocuticle is one of the triggers of moulting. The objective of this work was therefore to determine the exact timing of the first three moults that determine the growth of <i></i></span><i><i><span style="font-family:Verdana;">An. gambiae</span></i></i></span><span style="font-family:Verdana;"> larvae from egg hatch to pupation to highlight the role of increased larval size in the stimulation of moulting. We therefore, undertook to rear larvae of this anopheline species</span><i> </i><span style="font-family:Verdana;">in the laboratory under conditions close to their natural environment from hatching to pupation. The length and width of the head, thorax and abdomen were recorded daily. Data analysis showed that the size of the head and thorax remained constant for the first three days (D0 to D2) of development and ab</span><span style="font-family:Verdana;">domen’s length for the first two days and then increased daily until day seven (D7) when it stopped. These observations led us to say that the M1 moult occurs at end of the third day of development and the M3 moult at end of the eighth day;the M2 moult could not be determined. All these observations led </span><span><span style="font-family:Verdana;">to the conclusion that the larval growth of <i> </i></span><i><i><span style="font-family:Verdana;">An. gambiae</span></i></i></span><span style="font-family:Verdana;"> has a continuous</span><span style="font-family:Verdana;"> regimen and the growth of the head and thorax of the larva plays a crucial role in the onset of moulting.</span>展开更多
Passerines moult during various life-cycle stages.Some of these moults involve the retention of a variable quantity of wing and tail feathers.This prompts the question whether these partial moults are just arrested co...Passerines moult during various life-cycle stages.Some of these moults involve the retention of a variable quantity of wing and tail feathers.This prompts the question whether these partial moults are just arrested complete moults or follow different processes.To address it,I investigated whether three relevant features remain constant across partial and complete moults:1) moult sequence(order of activation) within feather tracts(e.g.,consecutive outward moult of primaries) and among tracts(e.g.,starting with marginal coverts,followed by greater coverts second,tertials,etc.);2) dynamics of moult intensity(amount of feathers growing along the moult progress);and 3) protection of wing quills by overlapping fully grown feathers.To study the effect of moult completeness on these three features,I classified moults of 435 individuals from 61 species in 3 groups:i) complete and partial,ii) without and iii) with retention of feathers within tracts.To study the effect of life-cycle stage,I used postbreeding,postjuvenile,and prebreeding moults.I calculated phylogenetically corrected means to establish feather-moult sequence within tracts.I applied linear regression to analyse moult sequence among tracts,and polynomial regression to study the dynamics of moult intensity as moult progresses.Sequence and intensity dynamics of partial moults tended resemble those of the complete moult as moult completeness increased.Sequence within and among feather tracts tended to shift as moult intensity within tracts and number of tracts increased.Activation of primaries advanced in relation to the other feather tracts as number of moulted primaries increased.Tertial quills were protected by the innermost greater covert regardless of moult completeness.These findings suggest that moult is a self-organised process that adjusts to the degree of completeness of plumage renewal.However,protection of quills and differences among species and between postjuvenile-and prebreeding-moult sequences also suggest an active control linked to feather function,including protection and signalling.展开更多
Sequence and intensity are two essential components of bird moult.While the moult sequences of remex tracts are highly homogenous across passerines,other tracts apparently show a high variability.Moreover,order of mou...Sequence and intensity are two essential components of bird moult.While the moult sequences of remex tracts are highly homogenous across passerines,other tracts apparently show a high variability.Moreover,order of moult activation among tracts are insufficiently known.Likewise,dynamics of moult intensity as moult progresses remains poorly known.Here,we provide detailed quantitative description of moult sequence and intensity in the House Sparrow(Passer domesticus).To understand their role,we tested two hypotheses on the:1) protection function of moult sequence,and 2) aerodynamic and physiological constraints on moult intensity.We scored percentage growth of 313 captured sparrows using the mass of the feathers of each tract(also length for remiges)to monitor moult intensity throughout the complete moult progress,which is defined as the fraction of new and growing feathers in a moulting bird relative to the total plumage.Moult sequence was highly variable both within wing coverts and among feather tracts,with moult sequence differing among all birds to some degree.We only found support for the protection function between greater coverts and both tertials and secondaries.Remex-moult intensity conformed to theoretical predictions,therefore lending support to the aerodynamic-constraint hypothesis.Furthermore,remex-moult speed plateaued during the central stages of moult progress.However,overall plumage-moult speed did not fit predictions of the physiological-constraint hypothesis,showing that the remex moult is only constrained by aerodynamics.Our results indicate that aerodynamic loss is not simply the inevitable effect of moult,but that moult is finely regulated to reduce aerodynamic loss.We propose that the moult of the House Sparrow is controlled through sequence and intensity adjustments in order to:1) avoid body and wing growth peaks;2) fulfil the protection function between some key feather tracts;3) reduce detrimental effects on flight ability;4) keep remex sequence fixed;and 5) relax remex replacement to last the whole moult duration.展开更多
Effect of salinity on survival,feeding behavior and growth of juvenile swimming crab P ortunus trituberculatus was investigated under 5 salinity levels of 5,10,20,30 and 40. The results show that the crab juveniles fe...Effect of salinity on survival,feeding behavior and growth of juvenile swimming crab P ortunus trituberculatus was investigated under 5 salinity levels of 5,10,20,30 and 40. The results show that the crab juveniles fed 2 or 3 times at the salinity 20 and 30,each lasted for about 25 minutes,for a total feeding time of 73.2±22.65 minutes per day. At these salinities,there were significantly higher in the frequency of feeding and in total feeding time than those at lower salinities of 5 and 10. All crab juveniles moulted when reared at a salinity of 20 during the 5 days duration of the experiment,which is significantly higher than those at other salinities. All juveniles survived at salinity 20,and the survivorship was not significantly different from that at 30,but was signif icantly higher than those at other salinities. The crab juveniles reared at a salinity of 20 had the highest value of food ration of 0.190 8±0.011 3 g/g BW,average body weight gain of 0.796±0.128 g,gain rate of 87%–96%,and food conversion ratio of 1.20±0.09. There was no significant difference in the values found between 20 and 30 but these values were significantly lower than that at the other salinities( P> 0.05). Highest activities of digestive enzymes(Amylase,Protease,Lipase) and lowest activities of protective enzymes(SOD,PO,CAT) were also obtained on crab juveniles reared at salinity of 20.展开更多
Background:Most of long-distance migratory raptors suspend moult during migration but detailed information is patchy for most of the Palearctic species.The aim of this research is to verify if active moulting in migra...Background:Most of long-distance migratory raptors suspend moult during migration but detailed information is patchy for most of the Palearctic species.The aim of this research is to verify if active moulting in migrating Western Marsh Harriers occurs and to quantify the extent of moulting along the season focusing on primary feathers.Methods:During a whole post-breeding migration at the Strait of Messina in Southern Italy,we gathered information about symmetrical flight feather moult from 221 adults by taking pictures of raptors passing at close range.Results:We found active moulting primaries during autumn migration in 48.4% of our samples.Slight differences on the extension and timing among sex classes were recorded during the season,with adult females showing a more advanced moult stage than adult males.Conclusion:The finding that the extension of the suspended moult was already defined in migratory individuals might be explained as an adaptation to minimize the energy required for moulting during migration.展开更多
The growth rate of the hyalid amphipod Hyale perieri was studied on the bases of Ikeda'sgrowth model which is based on the inter moult period (IP) and moult increament (△BL). To apply this approach, laboratory ex...The growth rate of the hyalid amphipod Hyale perieri was studied on the bases of Ikeda'sgrowth model which is based on the inter moult period (IP) and moult increament (△BL). To apply this approach, laboratory experiments were carried out at three temperatures regimes (15℃, 20℃, 25℃ ) to gain accurate data of IP and BL. The total number of specimens used in this study was 86 at 15℃ , 24 at 20℃ and 70 at 25℃. The number of flagellar segments of both antennae of the Hyale perieri could not be used as an index of growth (instar criterion). The obtained results indicated that, the predicted IP of the specimens was inversely related to temperature and in good agreement with the observed values at the experimental temperatures. IP data obtained from laboratory-reared specimes are combined with ABL data to establish a growth model for Hyale perieri from its release from the mar-supium (1.64 mm BL ) to the maximum size (12.67 mm BL) as a function of temperature. The maximum numbers of consecutive moults recorded during the experiment were 13 moults (14 instar) at 15℃, 14 moults (15 instar) at 20℃ and 12 moults (13 instar) at 25℃ . The predicted life span for BL = 12.67 mm (moult 13) was 203.82 d at 15t, for BL = 11.75 mm (moult 14) was 138.94 d at 20℃ and for BL = 8.65 mm (moult 12) was 75.40 d at 25℃ respectively, thus confirming that the life span of the species is inversely proportional to temperature. Within the experimental temperatures tested, the optimum temperature for the growth of the species was 20℃.展开更多
In order to discover highly active ecdysone analogs, a series of new substituted pyrazole amide derivatives were obtained using structure-guided optimization method and further screened for their insecticidal activiti...In order to discover highly active ecdysone analogs, a series of new substituted pyrazole amide derivatives were obtained using structure-guided optimization method and further screened for their insecticidal activities, in the basis of the core structures of the two active compounds N-(3-methoxyphenyl)-3-(tert-butyl)-1-phenyl-1H-pyrazole-5-carboxamide(6e) and N-(4-(tert-butyl)phenyl)-3-(tert-butyl)-1-phenyl-1H-pyrazole-5-carboxamide(6i), previously presented by us. The chemical structures of the title compounds were identified by spectral analyses. The preliminary bioassay results indicated that one among the synthesized pyrazole derivatives, compound 34, endowed with good activity against Mythimna Separata at 10 mg/L, which was equal to that displayed by the positive control tebufenozide. In addition, examples of molecular docking and molecular dynamics studies demonstrated that 34 may be the potential inhibitor to Ec R and its docking conformation was similar to that of tebufenozide. In addition, increasing the hydrophobic effect and considering the suitable bulk effect on pyrazole ring are beneficial to the inhibiting activity to Ec R and activity in vivo.展开更多
Ecdysis is a comm on phe nomenon that happe ns throughout the life phase of the giant freshwater prawn Macrobrachium rosenbergii.It is vital to better understand the correlation between cannibalism and biochemical com...Ecdysis is a comm on phe nomenon that happe ns throughout the life phase of the giant freshwater prawn Macrobrachium rosenbergii.It is vital to better understand the correlation between cannibalism and biochemical compound that exists during the moulting process.The objective of the present study was to determine the amino acid profile released by M.rosenbergii during the ecdysis process that promotes cannibalism.To accomplish this,changes in amino acid levels(total amino acid(TAA)and free amino acid(FAA))of tissue muscle,exoskeleton,and sample water of culture medium from the moulting(E-stage)and non-moulting(C-stage)prawns were analysed using highperformanee liquid chromatography(HPLC).Comparison study revealed that among the TAA compounds,proline and sarcosine of tissues from moulting prawn were found at the highest levels.The level of FAA from water that contains moulting prawns(E-stage)was dominated by tryptophan and proline.Significant values obtained in the present study suggested that these amino acid compounds act as a chemical cue to promote cannibalism in M.rosenbergii during ecdysis.The knowledge of compositions and compounds that were released during the moulting process should be helpful for better understanding of the mechanism and chemical cues that play roles on triggering cannibalism,and also for future dietary man ipulati on to improve feeding efficie ncies and feeding man agement,which in directly impacts productivity and profitability.展开更多
文摘Effects of the mixture of β-ecdysone and polypodine -B (2 : 1 W/W) on the moulting and growth of prawn, Penaeus orientaliss were studied in laboratory by rearing the animal with the added compound diets. The results showed that the addition of the moulting hormone (M. H) mixture to compound diets, from 1. 33× 10-6 to 30×10-6, could increase moulting activity and growth rate of the prawn to different extents, among which the 5. 33× 10-6-10. 67×10-6addition had statistically significant effects. However, 60 × 10-6 added diets caused moulting and growth inhibitions and cuticle thickening. The analyses of protein, water and ash contents of the prawn showed no remarkable differences between hormone dosed animals and the control.
文摘Growth in arthropods in general and in insects in particular, is supposed to be discontinuous and occurs during moulting. In Culicidae in general and <i> <i><span style="font-family:Verdana;">Anopheles</span></i></i><span style="font-family:Verdana;"> in particular, the number of moults is five with the fourth which gives the pupae. It is known that moulting in insects is a genetic and physio</span><span><span style="font-family:Verdana;">logical phenomenon. Most physiological reactions are triggered by chemical or physical stimuli. The pressure exerted by the growth of the larval body on the exocuticle is one of the triggers of moulting. The objective of this work was therefore to determine the exact timing of the first three moults that determine the growth of <i></i></span><i><i><span style="font-family:Verdana;">An. gambiae</span></i></i></span><span style="font-family:Verdana;"> larvae from egg hatch to pupation to highlight the role of increased larval size in the stimulation of moulting. We therefore, undertook to rear larvae of this anopheline species</span><i> </i><span style="font-family:Verdana;">in the laboratory under conditions close to their natural environment from hatching to pupation. The length and width of the head, thorax and abdomen were recorded daily. Data analysis showed that the size of the head and thorax remained constant for the first three days (D0 to D2) of development and ab</span><span style="font-family:Verdana;">domen’s length for the first two days and then increased daily until day seven (D7) when it stopped. These observations led us to say that the M1 moult occurs at end of the third day of development and the M3 moult at end of the eighth day;the M2 moult could not be determined. All these observations led </span><span><span style="font-family:Verdana;">to the conclusion that the larval growth of <i> </i></span><i><i><span style="font-family:Verdana;">An. gambiae</span></i></i></span><span style="font-family:Verdana;"> has a continuous</span><span style="font-family:Verdana;"> regimen and the growth of the head and thorax of the larva plays a crucial role in the onset of moulting.</span>
文摘Passerines moult during various life-cycle stages.Some of these moults involve the retention of a variable quantity of wing and tail feathers.This prompts the question whether these partial moults are just arrested complete moults or follow different processes.To address it,I investigated whether three relevant features remain constant across partial and complete moults:1) moult sequence(order of activation) within feather tracts(e.g.,consecutive outward moult of primaries) and among tracts(e.g.,starting with marginal coverts,followed by greater coverts second,tertials,etc.);2) dynamics of moult intensity(amount of feathers growing along the moult progress);and 3) protection of wing quills by overlapping fully grown feathers.To study the effect of moult completeness on these three features,I classified moults of 435 individuals from 61 species in 3 groups:i) complete and partial,ii) without and iii) with retention of feathers within tracts.To study the effect of life-cycle stage,I used postbreeding,postjuvenile,and prebreeding moults.I calculated phylogenetically corrected means to establish feather-moult sequence within tracts.I applied linear regression to analyse moult sequence among tracts,and polynomial regression to study the dynamics of moult intensity as moult progresses.Sequence and intensity dynamics of partial moults tended resemble those of the complete moult as moult completeness increased.Sequence within and among feather tracts tended to shift as moult intensity within tracts and number of tracts increased.Activation of primaries advanced in relation to the other feather tracts as number of moulted primaries increased.Tertial quills were protected by the innermost greater covert regardless of moult completeness.These findings suggest that moult is a self-organised process that adjusts to the degree of completeness of plumage renewal.However,protection of quills and differences among species and between postjuvenile-and prebreeding-moult sequences also suggest an active control linked to feather function,including protection and signalling.
基金the Natural Sciences Museum of Barcelona(PASSERCAT-2 project)to JQ.
文摘Sequence and intensity are two essential components of bird moult.While the moult sequences of remex tracts are highly homogenous across passerines,other tracts apparently show a high variability.Moreover,order of moult activation among tracts are insufficiently known.Likewise,dynamics of moult intensity as moult progresses remains poorly known.Here,we provide detailed quantitative description of moult sequence and intensity in the House Sparrow(Passer domesticus).To understand their role,we tested two hypotheses on the:1) protection function of moult sequence,and 2) aerodynamic and physiological constraints on moult intensity.We scored percentage growth of 313 captured sparrows using the mass of the feathers of each tract(also length for remiges)to monitor moult intensity throughout the complete moult progress,which is defined as the fraction of new and growing feathers in a moulting bird relative to the total plumage.Moult sequence was highly variable both within wing coverts and among feather tracts,with moult sequence differing among all birds to some degree.We only found support for the protection function between greater coverts and both tertials and secondaries.Remex-moult intensity conformed to theoretical predictions,therefore lending support to the aerodynamic-constraint hypothesis.Furthermore,remex-moult speed plateaued during the central stages of moult progress.However,overall plumage-moult speed did not fit predictions of the physiological-constraint hypothesis,showing that the remex moult is only constrained by aerodynamics.Our results indicate that aerodynamic loss is not simply the inevitable effect of moult,but that moult is finely regulated to reduce aerodynamic loss.We propose that the moult of the House Sparrow is controlled through sequence and intensity adjustments in order to:1) avoid body and wing growth peaks;2) fulfil the protection function between some key feather tracts;3) reduce detrimental effects on flight ability;4) keep remex sequence fixed;and 5) relax remex replacement to last the whole moult duration.
基金Supported by the Science and Technology Innovation Team of Marine Crab Industry in Ningbo City(No.2011B81003)the National Natural Science Foundation of China(No.41276123)+2 种基金the National Spark Plan Program of China(No.2012GA701048)the Key Project of Ministry of Education,Science and Technology(No.212070)the K C Wong Magana Fund in Ningbo University
文摘Effect of salinity on survival,feeding behavior and growth of juvenile swimming crab P ortunus trituberculatus was investigated under 5 salinity levels of 5,10,20,30 and 40. The results show that the crab juveniles fed 2 or 3 times at the salinity 20 and 30,each lasted for about 25 minutes,for a total feeding time of 73.2±22.65 minutes per day. At these salinities,there were significantly higher in the frequency of feeding and in total feeding time than those at lower salinities of 5 and 10. All crab juveniles moulted when reared at a salinity of 20 during the 5 days duration of the experiment,which is significantly higher than those at other salinities. All juveniles survived at salinity 20,and the survivorship was not significantly different from that at 30,but was signif icantly higher than those at other salinities. The crab juveniles reared at a salinity of 20 had the highest value of food ration of 0.190 8±0.011 3 g/g BW,average body weight gain of 0.796±0.128 g,gain rate of 87%–96%,and food conversion ratio of 1.20±0.09. There was no significant difference in the values found between 20 and 30 but these values were significantly lower than that at the other salinities( P> 0.05). Highest activities of digestive enzymes(Amylase,Protease,Lipase) and lowest activities of protective enzymes(SOD,PO,CAT) were also obtained on crab juveniles reared at salinity of 20.
文摘Background:Most of long-distance migratory raptors suspend moult during migration but detailed information is patchy for most of the Palearctic species.The aim of this research is to verify if active moulting in migrating Western Marsh Harriers occurs and to quantify the extent of moulting along the season focusing on primary feathers.Methods:During a whole post-breeding migration at the Strait of Messina in Southern Italy,we gathered information about symmetrical flight feather moult from 221 adults by taking pictures of raptors passing at close range.Results:We found active moulting primaries during autumn migration in 48.4% of our samples.Slight differences on the extension and timing among sex classes were recorded during the season,with adult females showing a more advanced moult stage than adult males.Conclusion:The finding that the extension of the suspended moult was already defined in migratory individuals might be explained as an adaptation to minimize the energy required for moulting during migration.
文摘The growth rate of the hyalid amphipod Hyale perieri was studied on the bases of Ikeda'sgrowth model which is based on the inter moult period (IP) and moult increament (△BL). To apply this approach, laboratory experiments were carried out at three temperatures regimes (15℃, 20℃, 25℃ ) to gain accurate data of IP and BL. The total number of specimens used in this study was 86 at 15℃ , 24 at 20℃ and 70 at 25℃. The number of flagellar segments of both antennae of the Hyale perieri could not be used as an index of growth (instar criterion). The obtained results indicated that, the predicted IP of the specimens was inversely related to temperature and in good agreement with the observed values at the experimental temperatures. IP data obtained from laboratory-reared specimes are combined with ABL data to establish a growth model for Hyale perieri from its release from the mar-supium (1.64 mm BL ) to the maximum size (12.67 mm BL) as a function of temperature. The maximum numbers of consecutive moults recorded during the experiment were 13 moults (14 instar) at 15℃, 14 moults (15 instar) at 20℃ and 12 moults (13 instar) at 25℃ . The predicted life span for BL = 12.67 mm (moult 13) was 203.82 d at 15t, for BL = 11.75 mm (moult 14) was 138.94 d at 20℃ and for BL = 8.65 mm (moult 12) was 75.40 d at 25℃ respectively, thus confirming that the life span of the species is inversely proportional to temperature. Within the experimental temperatures tested, the optimum temperature for the growth of the species was 20℃.
基金supported by the National Natural Science Foundation of China (No. 21272265)the National High Technology Research and Development Program of China (No.2011AA10A204)
文摘In order to discover highly active ecdysone analogs, a series of new substituted pyrazole amide derivatives were obtained using structure-guided optimization method and further screened for their insecticidal activities, in the basis of the core structures of the two active compounds N-(3-methoxyphenyl)-3-(tert-butyl)-1-phenyl-1H-pyrazole-5-carboxamide(6e) and N-(4-(tert-butyl)phenyl)-3-(tert-butyl)-1-phenyl-1H-pyrazole-5-carboxamide(6i), previously presented by us. The chemical structures of the title compounds were identified by spectral analyses. The preliminary bioassay results indicated that one among the synthesized pyrazole derivatives, compound 34, endowed with good activity against Mythimna Separata at 10 mg/L, which was equal to that displayed by the positive control tebufenozide. In addition, examples of molecular docking and molecular dynamics studies demonstrated that 34 may be the potential inhibitor to Ec R and its docking conformation was similar to that of tebufenozide. In addition, increasing the hydrophobic effect and considering the suitable bulk effect on pyrazole ring are beneficial to the inhibiting activity to Ec R and activity in vivo.
基金Fundamental Research Grant Scheme from the Ministry of Higher Education,Malaysia(No.59324)。
文摘Ecdysis is a comm on phe nomenon that happe ns throughout the life phase of the giant freshwater prawn Macrobrachium rosenbergii.It is vital to better understand the correlation between cannibalism and biochemical compound that exists during the moulting process.The objective of the present study was to determine the amino acid profile released by M.rosenbergii during the ecdysis process that promotes cannibalism.To accomplish this,changes in amino acid levels(total amino acid(TAA)and free amino acid(FAA))of tissue muscle,exoskeleton,and sample water of culture medium from the moulting(E-stage)and non-moulting(C-stage)prawns were analysed using highperformanee liquid chromatography(HPLC).Comparison study revealed that among the TAA compounds,proline and sarcosine of tissues from moulting prawn were found at the highest levels.The level of FAA from water that contains moulting prawns(E-stage)was dominated by tryptophan and proline.Significant values obtained in the present study suggested that these amino acid compounds act as a chemical cue to promote cannibalism in M.rosenbergii during ecdysis.The knowledge of compositions and compounds that were released during the moulting process should be helpful for better understanding of the mechanism and chemical cues that play roles on triggering cannibalism,and also for future dietary man ipulati on to improve feeding efficie ncies and feeding man agement,which in directly impacts productivity and profitability.