As one of the most fragile alpine plateau and canyon areas in China,the upper reaches of the Yangtze River are the key areas of ecological construction in China.It is also a key area for poverty alleviation in the cou...As one of the most fragile alpine plateau and canyon areas in China,the upper reaches of the Yangtze River are the key areas of ecological construction in China.It is also a key area for poverty alleviation in the country.Therefore,it is necessary to take into account the dual goals of poverty reduction and ecological environment construction,and explore a win-win road of ecological construction and poverty alleviation in line with the reality of the upper reaches of the Yangtze River.Taking Xueshan Township,Luquan Yi and Miao Autonomous County,Yunnan Province,which is located in the poor mountainous area of the upper reaches of the Yangtze River as an example,based on many field investigations and existing investigation and statistical data,this paper analyzes the current situation and main problems of land use in Xueshan Township,and then puts forward measures and suggestions for rational utilization of land resources in Xueshan Township.This can provide a necessary reference for the next implementation of rural revitalization strategy and ecological construction.展开更多
Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on...Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on regional water resources.The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources,to prevent and mitigate glacier-related disasters.This study maps the current(2020)distribution of glacier boundaries across the Kaidu-Kongque river basin,south slope of Tianshan Mountains,and monitors the spatial evolution of glaciers over five time periods from 2000-2020 through thresholded band ratios approach,using 25 Landsat images at 30 m resolution.In addition,this study attempts to understand the role of climate characteristics for variable response of glacier area.The results show that the total area of glaciers was 398.21 km^(2)in 2020.The glaciers retreated by about 1.17 km^(2)/a(0.26%/a)from 2000 to 2020.The glaciers were reducing at a significantly rapid rate between 2000 and 2005,a slow rate from 2005 to 2015,and an accelerated rate during 2015-2020.The meteorological data shows slight increasing trends of mean annual temperature(0.02℃/a)and annual precipitation(2.07 mm/a).The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation.There is a temporal hysteresis in the response of glacier change to climate change.Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years.展开更多
There are 43 rivers of varying sizes in the northern slope of the Kunlun Mountains, all of which originate from the Kunlun Mountains. Supplied by precipitation and melting water of glacier, the total runoff amounts to...There are 43 rivers of varying sizes in the northern slope of the Kunlun Mountains, all of which originate from the Kunlun Mountains. Supplied by precipitation and melting water of glacier, the total runoff amounts to 87×108m3. The analysis shows that water quantity distribution of the rivers in the area is more in the west, and less in the east. While in the west, the water quantity of the Hotan River amounts to more than half of the total, in th eeast, most rivers are seasonal rivers except the Keriya River and the Qarqan River, which have relatively large amount of waters. From the analysis of inner structures of the runoff series of the major rivers, we can see that the annual runoff series of all rivers are mainly stable independent random series. Such characteristics of the time series are determined by the supply characteristics of the rivers. Some measures of rationally using water resources are proposed finally.展开更多
Hydrological processes in river basins of similar size and morphology may differ significantly due to different climatic conditions. This paper presents a comparative analysis of hydrological characteristics of two ri...Hydrological processes in river basins of similar size and morphology may differ significantly due to different climatic conditions. This paper presents a comparative analysis of hydrological characteristics of two river basins located in different climatic zones: the Wisok River Basin in the south-eastern Poland and the Chaohe River Basin in the northern China. The criteria of their choice were similarities in the basin area, main river length and topography. The results show that climate plays a key role in shaping fluvial conditions within the two basins. It is concluded that: 1) precipitation in the Wisok River Basin is more evenly distributed in the yearly cycle, while in the Chaohe River Basin it is highly concentrated in the few summer months; 2) spring snowmelt significantly contributes to runoff in the Wisok River Basin, while its role in the Chaohe River Basin is negligible; 3) in the Wisok River Basin, besides the peak flow in spring, there is also a period of high water in summer resulting from precipitation, while in the Chaohe River Basin there is only one high water period in summer; 4) the Wisok River Basin shows relatively higher stability in terms of the magnitude of intra- and inter-seasonal discharges; 5) during the multi-year observation period, a decrease in both precipitation and runoff was recorded in the two river basins.展开更多
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive...Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.展开更多
为了掌握北京市山区河流的生态健康状况,采用鱼类生物完整性指数(fish-index of biological integrity,F-IBI)进行了评价。于2021年8月、2022年5月、2022年10月对5条代表性山区河流的11个点位,进行了鱼类种群、水质、生境等调查。构建...为了掌握北京市山区河流的生态健康状况,采用鱼类生物完整性指数(fish-index of biological integrity,F-IBI)进行了评价。于2021年8月、2022年5月、2022年10月对5条代表性山区河流的11个点位,进行了鱼类种群、水质、生境等调查。构建了鱼类生物完整性评价体系,确定核心指标9项,分别为鱼类总物种数(M1)、Shannon-Wiener多样性指数(M2)、鲤科鱼类占总物种数的百分比(M4)、鳅科鱼类占总物种数的百分比(M5)、底层鱼类百分比(M20)、杂食性鱼类数量百分比(M22)、耐受性鱼类数量百分比(M23)、黏性卵鱼类数量百分比(M26)和鱼类总个体数(M30)。采用比值法对上述核心指标进行赋分,并按照F-IBI得分将河流水生态健康状况划分为5个健康等级。结果显示研究区域河流生态健康状况良好,其中“优”、“良”点位占比为72.7%。通过分析F-IBI值与水质、生境等因素的相关性,发现全盐量、pH与F-IBI存在显著相关,而与水深、距闸坝的距离、溶解氧、透明度、化学需氧量、高锰酸盐指数、氨氮、总磷等不存在显著相关性。河道大量补充再生水会造成F-IBI下降,但是经过适当人工干预措施,如人工湿地,可以有效提升鱼类生物完整性。展开更多
文摘As one of the most fragile alpine plateau and canyon areas in China,the upper reaches of the Yangtze River are the key areas of ecological construction in China.It is also a key area for poverty alleviation in the country.Therefore,it is necessary to take into account the dual goals of poverty reduction and ecological environment construction,and explore a win-win road of ecological construction and poverty alleviation in line with the reality of the upper reaches of the Yangtze River.Taking Xueshan Township,Luquan Yi and Miao Autonomous County,Yunnan Province,which is located in the poor mountainous area of the upper reaches of the Yangtze River as an example,based on many field investigations and existing investigation and statistical data,this paper analyzes the current situation and main problems of land use in Xueshan Township,and then puts forward measures and suggestions for rational utilization of land resources in Xueshan Township.This can provide a necessary reference for the next implementation of rural revitalization strategy and ecological construction.
基金This work was supported by the project of China Geology Survey(DD20190315)Innovation Capability Support Program of Shaanxi(2019TD-040)+1 种基金“Integration of Groundwater Resources Assessment Results in Key Areas of Northwest China”programKey Laboratory of Groundwater and Ecology in Arid and Semi-arid Areas of China Geological Survey.
文摘Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on regional water resources.The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources,to prevent and mitigate glacier-related disasters.This study maps the current(2020)distribution of glacier boundaries across the Kaidu-Kongque river basin,south slope of Tianshan Mountains,and monitors the spatial evolution of glaciers over five time periods from 2000-2020 through thresholded band ratios approach,using 25 Landsat images at 30 m resolution.In addition,this study attempts to understand the role of climate characteristics for variable response of glacier area.The results show that the total area of glaciers was 398.21 km^(2)in 2020.The glaciers retreated by about 1.17 km^(2)/a(0.26%/a)from 2000 to 2020.The glaciers were reducing at a significantly rapid rate between 2000 and 2005,a slow rate from 2005 to 2015,and an accelerated rate during 2015-2020.The meteorological data shows slight increasing trends of mean annual temperature(0.02℃/a)and annual precipitation(2.07 mm/a).The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation.There is a temporal hysteresis in the response of glacier change to climate change.Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years.
文摘There are 43 rivers of varying sizes in the northern slope of the Kunlun Mountains, all of which originate from the Kunlun Mountains. Supplied by precipitation and melting water of glacier, the total runoff amounts to 87×108m3. The analysis shows that water quantity distribution of the rivers in the area is more in the west, and less in the east. While in the west, the water quantity of the Hotan River amounts to more than half of the total, in th eeast, most rivers are seasonal rivers except the Keriya River and the Qarqan River, which have relatively large amount of waters. From the analysis of inner structures of the runoff series of the major rivers, we can see that the annual runoff series of all rivers are mainly stable independent random series. Such characteristics of the time series are determined by the supply characteristics of the rivers. Some measures of rationally using water resources are proposed finally.
基金Under the auspices of Fellowship for Young International Scientists of Chinese Academy of Sciences(No.2010Y12A10)
文摘Hydrological processes in river basins of similar size and morphology may differ significantly due to different climatic conditions. This paper presents a comparative analysis of hydrological characteristics of two river basins located in different climatic zones: the Wisok River Basin in the south-eastern Poland and the Chaohe River Basin in the northern China. The criteria of their choice were similarities in the basin area, main river length and topography. The results show that climate plays a key role in shaping fluvial conditions within the two basins. It is concluded that: 1) precipitation in the Wisok River Basin is more evenly distributed in the yearly cycle, while in the Chaohe River Basin it is highly concentrated in the few summer months; 2) spring snowmelt significantly contributes to runoff in the Wisok River Basin, while its role in the Chaohe River Basin is negligible; 3) in the Wisok River Basin, besides the peak flow in spring, there is also a period of high water in summer resulting from precipitation, while in the Chaohe River Basin there is only one high water period in summer; 4) the Wisok River Basin shows relatively higher stability in terms of the magnitude of intra- and inter-seasonal discharges; 5) during the multi-year observation period, a decrease in both precipitation and runoff was recorded in the two river basins.
基金This work was financially supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032)+1 种基金Central Plains Science and technology innovation leader Project(214200510030)Key research and development Project of Henan province(221111321500).
文摘Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.
文摘为了掌握北京市山区河流的生态健康状况,采用鱼类生物完整性指数(fish-index of biological integrity,F-IBI)进行了评价。于2021年8月、2022年5月、2022年10月对5条代表性山区河流的11个点位,进行了鱼类种群、水质、生境等调查。构建了鱼类生物完整性评价体系,确定核心指标9项,分别为鱼类总物种数(M1)、Shannon-Wiener多样性指数(M2)、鲤科鱼类占总物种数的百分比(M4)、鳅科鱼类占总物种数的百分比(M5)、底层鱼类百分比(M20)、杂食性鱼类数量百分比(M22)、耐受性鱼类数量百分比(M23)、黏性卵鱼类数量百分比(M26)和鱼类总个体数(M30)。采用比值法对上述核心指标进行赋分,并按照F-IBI得分将河流水生态健康状况划分为5个健康等级。结果显示研究区域河流生态健康状况良好,其中“优”、“良”点位占比为72.7%。通过分析F-IBI值与水质、生境等因素的相关性,发现全盐量、pH与F-IBI存在显著相关,而与水深、距闸坝的距离、溶解氧、透明度、化学需氧量、高锰酸盐指数、氨氮、总磷等不存在显著相关性。河道大量补充再生水会造成F-IBI下降,但是经过适当人工干预措施,如人工湿地,可以有效提升鱼类生物完整性。