期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Sensitivity of digital elevation models:The scenario from two tropical mountain river basins of the Western Ghats,India 被引量:1
1
作者 Jobin Thomas Sabu Joseph +1 位作者 K.P.Thrivikramji K.S.Arunkumar 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第6期893-909,共17页
The paper evaluates sensitivity of various spaceborne digital elevation models (DEMs), viz., Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mapping Mission (SRTM... The paper evaluates sensitivity of various spaceborne digital elevation models (DEMs), viz., Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mapping Mission (SRTM) and Global Multi-resolution Terrain Elevation Data 2010 (GMTED), in comparison with the DEM (TOPO) derived from contour data of 20 m interval of Survey of India topographic sheets of 1 : 50,000 scale. Several topographic attributes, such as elevation (above mean sea level), relative relief, slope, aspect, curvature, slope-length and -steepness (LS) factor, terrain ruggedness index (TRI), topo- graphic wetness index (TWI), hypsometric integral (lhyp) and drainage network attributes (stream number and stream length) of two tropical mountain river basins, viz. Muthirapuzha River Basin and Pambar River Basin are compared to evaluate the variations. Though the basins are comparable in extent, they differ in respect of terrain characteristics and climate. The result.,; suggest that ASTER and SRTM provide equally reliable representation of topography portrayed by TOP() and the topographic attributes extracted from the spaceborne DEMs are in agreement with those derived from TOPO. Despite the coarser resolution, SRTM shows relatively higher vertical accuracy (RMSE -- 23 and 20 m respectively in MRB and PRB) compared to ASTER (RMSE - 33 and 24 m) and GMTED (RMSE - 59 and 48 m). Vertical accuracy of all the spaceborne DEMs is influenced by relief of the terrain as well as type of vegetation. Further, GMTED shows significant deviation for most of the attributes, indicating its inability for mountain-river-basin-scale studies. 展开更多
关键词 DEM ASTER SRTM GMTEDTropical mountain river basins Western Ghats
下载PDF
A distributed runoff model for inland mountainous river basin of Northwest China 被引量:5
2
作者 CHENRensheng KANGErsi +1 位作者 YANGJianping ZHANGJishi 《Journal of Geographical Sciences》 SCIE CSCD 2003年第3期363-372,共10页
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Nort... In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content. 展开更多
关键词 inland river mountainous basin distributed runoff model VEGETATION Heihe River
下载PDF
Tectonic Evolution of the Middle Frontal Area of the Longmen Mountain Thrust Belt,Western Sichuan Basin,China 被引量:10
3
作者 JIN Wenzheng TANG Liangjie +3 位作者 YANG Keming WAN Guimei Lü Zhizhou YU Yixin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第1期92-102,共11页
By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt, China, we concluded that it had experienced five tectonic stages: (1) the formation stage (T3x) of the miniatur... By analyzing the balanced cross sections and subsidence history of the Longmen Mountain thrust belt, China, we concluded that it had experienced five tectonic stages: (1) the formation stage (T3x) of the miniature of Longmen Mountain, early Indosinian movement, and Anxian tectonic movement created the Longmen Mountain; (2) the stable tectonic stage (J1) where weaker tectonic movement resulted in the Longmen Mountain thrust belt being slightly uplifted and slightly subsiding the foreland basin; (3) the intense tectonic stage (J2-3), namely the early Yanshan movement; (4) continuous tectonic movement (K-E), namely the late Yanshan movement and early Himalayan movement; and (5) the formation of Longmen Mountain (N-Q), namely the late Himalayan movement. During those tectonic deformation stages, the Anxian movement and Himalayan movement played important roles in the Longmen Mountain's formation. The Himalayan movement affected Longmen Mountain the most; the strata thrust intensively and were eroded severely. There are some klippes in the middle part of the Longmen Mountain thrust belt because a few nappes were pushed southeastward in later tectonic deformation. 展开更多
关键词 balanced cross section shortening rate subsidence history Longmen mountain thrust belt Sichuan basin
下载PDF
Vegetation composition and distribution on the northern slope of Karlik Mountain to Naomaohu basin,East Tianshan Mountains 被引量:3
4
作者 YiBing QIAN HaiYan ZHANG +1 位作者 ZhaoNing WU ZhongChen WANG 《Journal of Arid Land》 SCIE 2011年第1期15-24,共10页
This paper reports the characteristics of plant flora in the region of the northern slope of Karlik Mountain to Naomaohu basin, based on field investigation of the vegetation and referring to relevant literature. The ... This paper reports the characteristics of plant flora in the region of the northern slope of Karlik Mountain to Naomaohu basin, based on field investigation of the vegetation and referring to relevant literature. The results show that the flora of the study area mainly consists of communities of single species or a limited number of species, genera and families. The flora composition is marked by the phenomenon of dominant families and genera; the temperate element occupies a dominant position, while in terms of the genera the Tethys element is an important component. Areal-types of the species are dominated by the floral element of Asian Central-part with xerophytic characteristic, and the life-forms of plants are mainly perennial and herbaceous. These characteristics reflect that the compositions of the species in this region possess both ancient and young elements. Analysis of the relationship between the species composition, plant community diversity and altitude gradient, we found that the structure of the vegetation has an obvi- ous vertical distribution. The lower and higher altitude areas, where the climate conditions are relative in- clement, are mainly occupied by the plant communities with simple structure and single dominant popula- tion, while the species richness in the mid-altitude area increases with favorable temperature and precipi- tation. Consequently, the species diversity and evenness indices show single-peak distribution with increasing elevation (about 〈 2500 m), while the dominance indices decrease in elevation from 500 m to 2500 m and increase in elevation of 〉 2500 m. 展开更多
关键词 Karlik mountain to Naomaohu basin VEGETATION COMPOSITION DISTRIBUTION
下载PDF
Application of the Material Balance Method in Paleoelevation Recovery: A Case Study of the Longmen Mountains Foreland Basin on the Eastern Margin of the Tibetan Plateau 被引量:4
5
作者 YAN Zhaokun LI Yong +6 位作者 LI Haibing DONG Shunli ZHAO Guohua LI Jingbo LI Fensheng YAN Liang ZHENG Lilong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期598-609,共12页
We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment... We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m. 展开更多
关键词 Longmen mountains foreland basin material balance method paleoelevation recovery the eastern margin of the Tibetan Plateau
下载PDF
Spatial and temporal variations in nitrogen retention effects in a subtropical mountainous basin in Southeast China
6
作者 LIU Mei-bing CHEN Xing-wei +2 位作者 CHEN Ying GAO Lu DENG Hai-jun 《Journal of Mountain Science》 SCIE CSCD 2021年第10期2672-2687,共16页
Nitrogen retention within a watershed reduces the amount of N exported to the ocean;however, it worsens environmental problems, including surface water eutrophication, aquifer pollution, acid rain, and soil acidificat... Nitrogen retention within a watershed reduces the amount of N exported to the ocean;however, it worsens environmental problems, including surface water eutrophication, aquifer pollution, acid rain, and soil acidification. Here, we adopted the Soil and Water Assessment Tool(SWAT) model to describe the riverine N output and retention effects in the Shanmei Reservoir Basin, a subtropical mountainous basin located in Quanzhou City, Southeast China. The results revealed that farmlands and orchards in the upstream and central parts of the basin were the dominant land use types, which contributed large N yields. Fertilizer application was the key source of riverine N output and N retention within the basin. On average, approximately 64% of anthropogenic N inputs were retained within the basin, whereas 36% of total N was exported to the downstream and coastal areas. The average N retention efficiency was 80% in a dry year, and within the year, N retention occurred in spring and summer and N release occurred in autumn and winter. The annual variation in N retention within the basin was largely dominated by changes in rainfall and runoff, whereas the seasonal characteristics of N retention were mainly affected by fertilization. Even with a large decrease in fertilizer application, owing to the contributions of the residual N pool and river background, the riverine N output still maintained a certain base value. The effects of precipitation, land use types, and agricultural fertilizer on N retention should be comprehensively considered to implement reasonable N management measures. 展开更多
关键词 Nitrogen retention Riverine nitrogen output Precipitation and runoff Fertilization management Subtropical mountainous basin
下载PDF
Regional Fault Systems of Qaidam Basin and Adjacent Orogenic Belts
7
作者 ZhangBingshan TangLiangjie +3 位作者 JinZhijun DaiJunsheng ZhangMingli ZhangBingshan 《Journal of China University of Geosciences》 SCIE CSCD 2003年第1期65-72,共8页
The purpose of this paper is to analyze the regional fault systems o f Qaidam basin and adjacent orogenic belts. Field investigation and seismic interp retation indicate that five regional fault systems occurred in t... The purpose of this paper is to analyze the regional fault systems o f Qaidam basin and adjacent orogenic belts. Field investigation and seismic interp retation indicate that five regional fault systems occurred in the Qaidam and ad jacent mountain belts, controlling the development and evolution of the Qaidam b asin. These fault systems are: (1)north Qaidam Qilian Mountain fault system; (2 ) south Qaidam East Kunlun Mountain fault system; (3)Altun strike slip fault s ystem; (4)Elashan strike slip fault system, and (5) Gansen Xiaochaidan fault s ystem. It is indicated that the fault systems controlled the orientation of the Qaidam basin, the formation and distribution of secondary faults within the basi n, the migration of depocenters and the distribution of hydrocarbon accumulation belt. 展开更多
关键词 fault system thrust fault strike slip fault basin mountain coupl ing Qaidam basin.
下载PDF
Structural characteristics of the basement and the prospective of favorable oil and gas blocks in the Tacheng basin
8
作者 Guoqing Zhang Junmeng Zhao +2 位作者 Hua Bai Ming Wan Xiaoyang Guo 《Earthquake Science》 CSCD 2012年第5期527-534,共8页
The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic... The Tacheng basin has been identified as a Carboniferous basement with a central uplift, sur- rounded by orogenic belts. This identification was based on the comprehensive analysis of field outcrops, regional magnetic and gravimetric data, skeleton seismic profiles, magnetotelluric profiles and drilling data. Here, we present gravimetric and magnetic data analyses of the basement structures of the Tacheng basin and its base formation. We also provide a magnetotelluric profile analysis of the structural features and tectonic framework of basin-mountain patterns. We use local geology, drilling data, and other comprehensive information to document the tectonic framework of the basement of the basin. Small-scale nappe structures are found in the northern basin, whereas stronger and more pronounced thrusting structures are found to the south and east of the basin. The basin is divided into four first-order tectonic units: a central uplift, a northern depression, a southeastern depression and a western depression. In addition, the Emin sag is suggested as a possible reservoir for oil and gas. 展开更多
关键词 northern Xinjiang Tacheng basin basement structure basin and mountain relation-ship tectonic unit division favorable area
下载PDF
Geological, Soil and Sediment Studies in Chelsaton Sedimentary Basin, Kabul, Afghanistan
9
作者 Hafizullah Rasouli Abdul Ghias Safi 《International Journal of Geosciences》 2021年第2期170-193,共24页
The geology, sediment and soil studies are important due to its significant impacts on agriculture, mining, constructions materials, industries, environment, ground water percolation, air pollution, surface and ground... The geology, sediment and soil studies are important due to its significant impacts on agriculture, mining, constructions materials, industries, environment, ground water percolation, air pollution, surface and ground water pollutions, earthquakes and geo-hazards in Afghanistan. In this research, we studied petrography, Sediment, tectonic structures, soil fraction selection by using hydrometer, sieving analysis, and geological mapping. Results show different kinds of metamorphic rocks of low grade and medium grade metamorphisms, Garnete mica Schist, Garnete Schist, Quarsite, different types of minerals among rocks. Further, type of sediment consisting residual angular (Autochthonous) and rounded (Allochthonous) transported by water, among sediments consisting Garnete, Gneiss, Schist, Quarsite, Biotite and consisting different type of sizes boulders, Cobble, Granule, Sand, Silt. Hydrometer analysis shows different types of soil clayey loam, sandy loam, silty loam. Moreover, Geological mapping shows complex tectonic structures like joints, cracks, faults, folds, anticline and syncline. The obtained<i> </i><span style="font-family:Verdana;">results suggest that the petrography, sediments and soil researches can be used efficiently for catchments of the Kabul Basin and other basins in Afghanistan.</span> 展开更多
关键词 Rock Types Geological Mapping Pedogenic Horizons Sediments Tectonic Faults FOLDS Fracture Joints Minerals Sieving Analyses HYDROMETER Inter mountains Backing basins
下载PDF
On Tectonogeomorphology of China
10
作者 Wan Tianfeng(Department of Geology and Mineral Resources, China University of Geosciences, Beijing 100083) 《Journal of Earth Science》 SCIE CAS CSCD 1995年第1期64-70,共7页
With the deepening of research in the tectonic evolution and stress fields of China in Meso-Cenozoic, some aspects of the Previous conclusion about the tectonogeomorphology of China are found to be open to question. T... With the deepening of research in the tectonic evolution and stress fields of China in Meso-Cenozoic, some aspects of the Previous conclusion about the tectonogeomorphology of China are found to be open to question. The author considers that the Sichuanian stage (135-52 Ma ) is the embryonic stage for forming the recent landform in eastern China;the appearance of the mountain ranges and drainage basin areas trending in east-west are the results of the north - south directional extension during the North Sinian stage(52 - 23.3 Ma );the formation of five mega - Step landforms from the Qinghai - Xizang Plateau to Pacific ocean and the seafloor spreading basins in the eastern margin of Asian continent as well as the l- up of drainage systems of both Yangtze and Yellow rivers are related to the northward compression, cast-west trending extension and the isostatic compensation of crust during Himalayan Stage (23.3-0.73 Ma ). Through the above three Stages of tectonic processes, a framework of landform of China finally took shape in the main. 展开更多
关键词 tectonogeomorphology stress field mountain range drainage basin extension zone of continental margin
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部