We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in t...We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in the precipitation regime had a positive trend for the warm seasons(April-October),but weakly positive or negative trends for the cold seasons(November-March). It was found that these changes correspond to the decreasing contribution of "Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and East zonal(Nm-Ez)" circulation groups and to the increasing contribution of "West zonal and Southern meridional(Wz-Sm)" circulation groups,accordingly to the Dzerdzeevskii classification. In addition,it was found that the variation of precipitation has a step change point in 1980. For the warm seasons,the precipitation change at this point is associated with the reduced influence of "West zonal(Wz)","Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and Southern meridional(Nm-Sm)" circulation groups. For the cold seasons,a substantialincrease of "Wz-Sm" and a decrease of "Nm-Sa","Nm-Ez" circulation groups are responsible for the precipitation change in the two time periods(1959-1980 and 1981-2014).展开更多
Due to frequent drinking water pollution accidents in the past decade, it is common that mountain reservoirs were used as the source of drinking water in China. However, some coastal areas frequently suffer from typho...Due to frequent drinking water pollution accidents in the past decade, it is common that mountain reservoirs were used as the source of drinking water in China. However, some coastal areas frequently suffer from typhoon with extreme precipitation, which results in the water quality deterioration of the reservoirs. The influence of typhoons with extreme precipitation on Jiaokou reservoir and the emergency treatment process of Maojiaping water treatment plant in the past three typical typhoons with extreme precipitation from the year of 2012-2015 were studied. It was found that the degradation of water quality, such as the increase of turbidity and bacteria index, may not merely appear during the events, but last for several days. Changing the dosage of water purification agent, such as coagulant and disinfectant at right time and place may be an efficient emergency water treatment process. Based on the analysis of water quality variation rule during and after the events, it was also found that emergency treatment can be fully prepared before the arrival of a typhoon with extreme precipitation. And in order to better respond to the typhoon with extreme precipitation, several suggestions are also proposed in this paper as follows: establishing vegetated buffers at right place, such as macrophanerophytes,shrub or herbage, increasing investments in infrastructure management, merging or cancelling the small-scale water treatment plants, preparing adequate water purification agent before the typhoon comes, etc.展开更多
Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6...Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6 sampling sites in the northern and southern slopes of Wushaoling Mountain from May 2013 to July 2014 to analyze the chemical characteristics of precipitation and to identify the main sources of ions in precipitation. Furthermore, we also explored the indicative significance for sand dust events in the northern and southern slopes of Wushaoling Mountain based on the precipitation chemistry analysis.During the sampling period(from May 2013 to July 2014), the p H values, EC(electrical conductivity)values and concentrations of cations(Ca^(2+), Mg^(2+), Na~+, K~+ and NH_4~+) and anions(SO_4^(2–), NO_3~–, Cl~–, NO_2~– and F~–) in precipitation were different in the northern and southern slopes at daily and seasonal time scales, with most of the values being higher in the northern slope than in the southern slope. The chemical type of precipitation in the southern and northern slopes was the same, i.e.,SO_4^(2–)-Ca^(2+)-NO_3~–-Na~+. The concentrations of ions in precipitation were mainly controlled by terrigenous material and anthropogenic activities(with an exception of Cl~–). The concentration of Cl~– in precipitation was mainly controlled by the sea salt fraction. The concentrations of Na+ and Cl~– showed an increasing trend after the occurrence of sand dust events both in the northern and southern slopes. In addition, after the occurrence of sand dust events, the concentrations of K~+, Mg^(2+), SO_4^(2–), NO_3~– and Ca^(2+) showed an increasing trend in the southern slope and a decreasing trend in the northern slope. It is our hope that the results may be helpful to further understand the atmospheric pollution caused by sand dust events in the Wushaoling Mountain and can also provide a scientific basis for the effective prevention of atmospheric pollution.展开更多
This paper studies the vapor pressure of water and precipitation situation in Lu'an Ground Station in Dabie Mountain area from 1979 to 1998.And the atmospheric perceivable water in Dabie Mountain can be calculated...This paper studies the vapor pressure of water and precipitation situation in Lu'an Ground Station in Dabie Mountain area from 1979 to 1998.And the atmospheric perceivable water in Dabie Mountain can be calculated by virtue of the empirical formula for atmospheric perceivable water.Besides,by analyzing the data,the seasonal changes of perceivable water in Dabie Mountain and the efficiency of precipitation of each weather system is acquired.The results show that there is a great potential for precipitation enhancement in Dabie Mountain.This paper introduces the processes and operation forms of precipitation enhancement for impounding water in reservoirs in Dabie Mountain region.展开更多
基金supported by RFBR according to the research project No.16-35-00188 mol_aproject“Climatic and ecological changes in Siberia by the data on glacio-chemical,diatomic and sporepollen analysis of ice-cores”(No.0383-2014-0005)
文摘We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in the precipitation regime had a positive trend for the warm seasons(April-October),but weakly positive or negative trends for the cold seasons(November-March). It was found that these changes correspond to the decreasing contribution of "Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and East zonal(Nm-Ez)" circulation groups and to the increasing contribution of "West zonal and Southern meridional(Wz-Sm)" circulation groups,accordingly to the Dzerdzeevskii classification. In addition,it was found that the variation of precipitation has a step change point in 1980. For the warm seasons,the precipitation change at this point is associated with the reduced influence of "West zonal(Wz)","Northern meridional and Stationary anticyclone(Nm-Sa)" and "Northern meridional and Southern meridional(Nm-Sm)" circulation groups. For the cold seasons,a substantialincrease of "Wz-Sm" and a decrease of "Nm-Sa","Nm-Ez" circulation groups are responsible for the precipitation change in the two time periods(1959-1980 and 1981-2014).
基金supported by the National Science Foundation of China(NSFC)(grant number 51438006)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Due to frequent drinking water pollution accidents in the past decade, it is common that mountain reservoirs were used as the source of drinking water in China. However, some coastal areas frequently suffer from typhoon with extreme precipitation, which results in the water quality deterioration of the reservoirs. The influence of typhoons with extreme precipitation on Jiaokou reservoir and the emergency treatment process of Maojiaping water treatment plant in the past three typical typhoons with extreme precipitation from the year of 2012-2015 were studied. It was found that the degradation of water quality, such as the increase of turbidity and bacteria index, may not merely appear during the events, but last for several days. Changing the dosage of water purification agent, such as coagulant and disinfectant at right time and place may be an efficient emergency water treatment process. Based on the analysis of water quality variation rule during and after the events, it was also found that emergency treatment can be fully prepared before the arrival of a typhoon with extreme precipitation. And in order to better respond to the typhoon with extreme precipitation, several suggestions are also proposed in this paper as follows: establishing vegetated buffers at right place, such as macrophanerophytes,shrub or herbage, increasing investments in infrastructure management, merging or cancelling the small-scale water treatment plants, preparing adequate water purification agent before the typhoon comes, etc.
基金supported by the Gansu Province Science Fund for Distinguished Young Scholars (1506RJDA282)the National Natural Science Foundation of China (41271039, 91547102)+2 种基金the Open Foundation of MOE Key Laboratory of Western China’s Environmental System of Lanzhou Universitythe Open Foundation from State Key Laboratory (SKLFSE201403)the West Light Program for Talent Cultivation of Chinese Academy of Sciences
文摘Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6 sampling sites in the northern and southern slopes of Wushaoling Mountain from May 2013 to July 2014 to analyze the chemical characteristics of precipitation and to identify the main sources of ions in precipitation. Furthermore, we also explored the indicative significance for sand dust events in the northern and southern slopes of Wushaoling Mountain based on the precipitation chemistry analysis.During the sampling period(from May 2013 to July 2014), the p H values, EC(electrical conductivity)values and concentrations of cations(Ca^(2+), Mg^(2+), Na~+, K~+ and NH_4~+) and anions(SO_4^(2–), NO_3~–, Cl~–, NO_2~– and F~–) in precipitation were different in the northern and southern slopes at daily and seasonal time scales, with most of the values being higher in the northern slope than in the southern slope. The chemical type of precipitation in the southern and northern slopes was the same, i.e.,SO_4^(2–)-Ca^(2+)-NO_3~–-Na~+. The concentrations of ions in precipitation were mainly controlled by terrigenous material and anthropogenic activities(with an exception of Cl~–). The concentration of Cl~– in precipitation was mainly controlled by the sea salt fraction. The concentrations of Na+ and Cl~– showed an increasing trend after the occurrence of sand dust events both in the northern and southern slopes. In addition, after the occurrence of sand dust events, the concentrations of K~+, Mg^(2+), SO_4^(2–), NO_3~– and Ca^(2+) showed an increasing trend in the southern slope and a decreasing trend in the northern slope. It is our hope that the results may be helpful to further understand the atmospheric pollution caused by sand dust events in the Wushaoling Mountain and can also provide a scientific basis for the effective prevention of atmospheric pollution.
基金Supported by China Meteorological Administration (Provincial Figure Operation System Based on the New Generation Radar)The Program of Experimental Investigation on the Development and Utilization of Aerial Cloud Resource in Anhui Province
文摘This paper studies the vapor pressure of water and precipitation situation in Lu'an Ground Station in Dabie Mountain area from 1979 to 1998.And the atmospheric perceivable water in Dabie Mountain can be calculated by virtue of the empirical formula for atmospheric perceivable water.Besides,by analyzing the data,the seasonal changes of perceivable water in Dabie Mountain and the efficiency of precipitation of each weather system is acquired.The results show that there is a great potential for precipitation enhancement in Dabie Mountain.This paper introduces the processes and operation forms of precipitation enhancement for impounding water in reservoirs in Dabie Mountain region.