Three global tectonic systems that formed since the middle Jurassic (160Ma ago)are outlined based on the global map of the Cenozoic and Mesozoic tectonics edited by Ma Zongjin et al.(1996).They are the circum\|Pacific...Three global tectonic systems that formed since the middle Jurassic (160Ma ago)are outlined based on the global map of the Cenozoic and Mesozoic tectonics edited by Ma Zongjin et al.(1996).They are the circum\|Pacific tectonic system,the mid\|ocean ridge tectonic system and the intra\|continental tectonic system of the north hemisphere.The map shows that about 80% of the total length of the continental orogens are concentrate on the north hemisphere of the earth,of which a latitudinal mountain\|plateau chain occur within a zone between north latitude 20°and 50°.Seismic and volcanic activities demonstrate that the intracontinental tectonic system on the north hemisphere is still active.Whilst distribution of the continental deep\|focus earthquakes and almost ultra high\|pressure rock found so far over the World,that are assumed both related to recent or previous deep subduction of continent,along with this zone.The latitudinal mountain\|plateau chain is subdivided into four active tectonic region of Qinghai—Xizang(Tibet),Iranian,eastern mediterranean and North American,both characterized by an individual similar mountain\|plateau\|basin structure with major active boundaries or controlling faults (Fig.1).These active regions are all close to primary dynamic boundaries of continent\|continent collision.Solution of source mechanisms shows that regional tectonic stress field in these regions are dominated by a nearly NS or NNE—SSW direction compression corresponding to a local plate motions and a global compressive zone.Correlation between the formation of the continental latitudinal mountain\|plateau chain on north hemisphere and the oceanic plate tectonics is discussed using the information of the “Map of Magnetic Lineations of the World’s Ocean Basins (Cande et al.,1989)”and the Cenozoic and Mesozoic tectonic evolution in the continents.Total 49 accretion units formed during 6 accretion stages of the ocean spreading in three chief oceans (the Pacific,the India and the Atlantic)si nce 160Ma ago,are subdivided.The distinguished oceanic accretion tectonics in combination with the geometrical and kinematics data of adjust continental f ragments allowed outline of the development of the continental latitudinal tecto nic zone of north hemisphere.Whilst,two global asymmetrical geodynamic systems of north\|south an east\|west direction,that may be composed of meridional conve ction,latitudinal convection and inertial flow resulting from the variation of the Earth’s rotational velocity,are used to discuss on the two global geodynamic systems in which the intracontinental latitudinal tectonic zone developed.展开更多
The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation...The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation and visual interpretation,and then the overlaying analysis of these data was conducted.The type and spatial location of succession were discovered and served as the sample of dependant variable.Meanwhile,supported by GIS technology and based on DEM and thematic data,the eight variables including altitude,slope,sin and cosin of aspect,curvity of land surface,and distance to residential area,cultivated land and road were extracted served as the sample of spatial succession of subalpine coniferous forests to fit Logistic Regression,and then the contribution of each independent variable as well as the spatial property of the occurrence probability of succession was calculated.The results suggested that,during the succession of subalpine coniferous forests to meadow,the closer to the residential area and cultivated land,the greater the contribution to succession is.In particular,when the distance to the residential area decreases by one unit,the probability for its conversion to meadow will be increased by 1.15 times.During the succession of subalpine coniferous forests to deciduous-broadleaved shrubs,the sin of aspect and distance to residential area contribute more,and the probability of succession increases with increasing degree of northwardness,i.e.when the degree of northwardness increases by one unit,the probability will be increased by 1.2 times.The quantitative analysis of spatial succession property of subalpine coniferous forests will supply scientific basis to the protection and restoration of subalpine coniferous forests.展开更多
To improve our knowledge of glacier change in the Tanggula Mountains located in the northeast of the Tibetan Plateau,we delineated outlines of the glaciers in 1991 and 2015 using Landsat TM/OLI images and compared the...To improve our knowledge of glacier change in the Tanggula Mountains located in the northeast of the Tibetan Plateau,we delineated outlines of the glaciers in 1991 and 2015 using Landsat TM/OLI images and compared them with the reported glacier data in the First Chinese Glacier Inventory in 1969 and the Second Chinese Glacier Inventory in 2007.These comparisons showed that the glacier area and ice volume decreased by 524.8 km2 and 37 km3,respectively.The majority of the glacier area loss was concentrated in the area class of 1-5 km2,between 5300 m and 5500 m in elevation,on north and east facing slopes and in the Dam Qu River basin.These glacier changes exhibited spatial and temporal differences.The glacier retreat rate gradually increased from 1969 to 2015,and the rate in the east was higher than that in the west.From 1969 to 2015,the warming rate in the Tanggula Mountains was 0.38°C/10a,while the annual precipitation only increased by 0.4%.The slight increase in the amount of precipitation made a limited contribution to glacier change,while the change in temperature led to noticeable shrinkage of the glaciers.Contrary to the retreat or stagnation of most glaciers in the study area,there were 10 glaciers that experienced clear advance in 1986-2015 with noticeable increases in both area and length.Whether or not these 10 glaciers are surge glaciers requires further study.展开更多
We present geomorphological evidence for multiple glacial fluctuations during the Quaternary in the Taniantaweng Mountain, which is situated at the transition zone of the southeastern Qinghai-Tibet Plateau and the Yun...We present geomorphological evidence for multiple glacial fluctuations during the Quaternary in the Taniantaweng Mountain, which is situated at the transition zone of the southeastern Qinghai-Tibet Plateau and the Yunnan-Guizhou Plateau. To reconstruct the history of glacial evolution during the Quaternary Glaciation, we present a ~13000 km^2 geomorphologic map(1:440,000) for the Quaternary glaciations, as well as three electron spin resonance(ESR) ages and three optically stimulated luminescence(OSL) ages from the landforms. By integrating these with ages from previous studies, four major glacial advances are identified during marine oxygen isotope stages(MIS) 6, 3, 2 and 1. This glacial chronology is in reasonable agreement with existing glacial chronologies from other parts of the Hengduan Mountains and surrounding mountains. Glaciers had extended to the Yuqu River during the glacial maximum advance(MIS 6), but became successively more restricted from MIS 3 to MIS 1. The glacial distribution show that precipitation brought by the south Asian monsoon might play a primary role in driving glacial advances during the last glacial period in the southeastern Qinghai-Tibet Plateau.展开更多
The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet ...The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study.The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree(CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis(CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slopepermafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.展开更多
The topographic maps of 1:50,000 scales,aerial photographs taken in 1966,one Landsat image taken in 1999,and SRTM data from 2000 were used to quantify the losses in area and volume of the glaciers on the Su-lo Mountai...The topographic maps of 1:50,000 scales,aerial photographs taken in 1966,one Landsat image taken in 1999,and SRTM data from 2000 were used to quantify the losses in area and volume of the glaciers on the Su-lo Mountain,in the northeastern Tibetan Plateau,China in the past 30 years.The total glacier area decreased from 492.9km2 in 1966 to 458.2km2 in 1999.The volume loss of the studied glaciers reached 1.4 km3 from 1966 to 2000.This agrees with documented changes in other mountain glaciers of the whole Tibetan Plateau.展开更多
This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift a...This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts's flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier.展开更多
We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment...We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m.展开更多
Daluo Mountains lie at front of the arcuate tectonic belt at the northeastern margin of the Tibetan Plateau,and are the landform boundary zone between the active Tibetan Plateau and the stable North China Craton.Study...Daluo Mountains lie at front of the arcuate tectonic belt at the northeastern margin of the Tibetan Plateau,and are the landform boundary zone between the active Tibetan Plateau and the stable North China Craton.Studying of the late Cenozoic uplift evolution of Daluo Mountains is important for understanding the expansion mechanism of the northeastern margin of the Tibetan Plateau and its influence on the western North China Craton.In this study,the late Cenozoic uplift of Daluo Mountains is constructed from the development of the late Cenozoic alluvial fan around Daluo Mountains.The entire sedimentary sequence and framework of the fan was revealed by the newly obtained drilling core data.The cosmogenic nuclide,optically stimulated luminescence,and detrital zircon U-Pb dating results provide new evidences for discussion about the initial timing of the late Cenozoic uplift of Daluo Mountains and the key stages of uplift during the Pleistocene.The late Cenozoic alluvial fan at front of Daluo Mountains overlies a set of fluvial-facies strata;therefore,development of the alluvial-fan marks the start of late Cenozoic uplift of Daluo Mountains.The timing of this event can be constrained to~4.64 Ma.Two extensive gravel layers(dated to ca.0.76–0.6 Ma and~0.05 Ma)developed during the Pleistocene,indicating two episodes of considerable uplift.This study provides a new time scale for the uplift and expansion of the arcuate tectonic belt at the northeastern margin of the Tibetan Plateau.展开更多
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.U...The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.展开更多
Jiayin Town,Honghe Prefecture,Yunnan Province is composed of four elements,forest,water,farmland and village.The highly adaptive human settlement environmental features of ecologyproduction-living space reflect the ad...Jiayin Town,Honghe Prefecture,Yunnan Province is composed of four elements,forest,water,farmland and village.The highly adaptive human settlement environmental features of ecologyproduction-living space reflect the adaptability of ethnic settlements on plateaus and mountains to the natural environment and geographical conditions.In this article,based on the unique natural environment and regional characteristics of Jiayin Town,the background features of the human settlement environment,the features of altitude,slope and aspect,the spatial features of forests and grasslands and the features of farmland and villages were analyzed,and design concepts of coordinating and integrating the development of ecology-production-living space,integrating and transforming natural resources into human settlement environmental resources and establishing village public awareness and the design strategies of cultivating culture with life and adopting things with rural quality were proposed,in order to provide scientifi c basis for the protection and development of the plateau and mountain ethnic villages and ensure their harmonious and orderly development.展开更多
1. The environmental quality of the Loess Plateau and Liupanshan mountainous area in Ningxia The landuse structure in the studied region was very irrational in 1970s, the propor-tions covered by farming, forestry and ...1. The environmental quality of the Loess Plateau and Liupanshan mountainous area in Ningxia The landuse structure in the studied region was very irrational in 1970s, the propor-tions covered by farming, forestry and animal husbandry are separately 50.91%, 6.32% and33.3%. Since 1980s, the farmland has been returned back to forestry and pasture so that展开更多
The main objective of this study is to simulate the potential vegetation types on the basis of environmental parameters.The paper took Barkam County in a mountainous region of the Eastern Tibetan Plateau as the study ...The main objective of this study is to simulate the potential vegetation types on the basis of environmental parameters.The paper took Barkam County in a mountainous region of the Eastern Tibetan Plateau as the study area.The vegetation distribution was mapped in 1994 and 2007 based on TM remote sensing images by object-oriented interpretation method.We overlaid the two maps to find out the vegetation patches which have not changed,and took them as stable types.Fifty per cent of the stable patches were randomly sampled to operate the logistic regression with related environmental parameters;others were used as test data of simulated results.Seven environmental parameters were mapped,including elevation,slope,aspect,surface curvature,solar radiation,temperature and precipitation,based on DEM data and meteorological site data by GIS technology.The relationship between the spatial distribution of vegetation and environmental variables were quantified by logistic regression.The distribution probabilities of each vegetation type were calculated.Finally,the spatial distribution of potential vegetation was simulated.This research can provide a scientific basis for vegetation restoration and ecological construction in this area.展开更多
The southeast Qinghaicozang (Tibetan) Plateau is a physcal mpon ofvery complicated eco-envirorunent with optimum hydrothermal conditions. Thisregon conains not ouly vast expanse of alpine soils but also abounds in mos...The southeast Qinghaicozang (Tibetan) Plateau is a physcal mpon ofvery complicated eco-envirorunent with optimum hydrothermal conditions. Thisregon conains not ouly vast expanse of alpine soils but also abounds in mosttypes of Chinese forest soils. The distributon and tallization of soils presents avery evident horizontal-vertical zonality. At present, panial soil resources arebeing damaged and the mountain ecology also tends to be instable. So rationalcuttin and forest conservation, barren mountain afferestation, retuming thecultivated land on stop slopes to forest, controlled graking, and soil ameliorationconstitute importan means for rational use of soil resources and improvement andstabilization of mountain ecology in tyis region展开更多
Tibet Plateau in mountain system is becoming one of the focuses of global technique research, because its crust is marvelous thick, which is twice of the normal thickness of mountain system in lithosphere, and its rap...Tibet Plateau in mountain system is becoming one of the focuses of global technique research, because its crust is marvelous thick, which is twice of the normal thickness of mountain system in lithosphere, and its rapid raise from the Quaternary. By using a finite element analysis software ABAQUS, the numeric analysis has been carried out and presented in this paper for the lithosphere stress field. It is the first time to use the displacement loading in the simulation of Tibet Plateau. During the analysis, the deformed elements are used to simulate the structure band, and friction mechanism is used to model the fracture band. The boundary conditions are given according to the boundary displacements around the Plateau. The stress and displacement distributions are obtained for the geological evolution of the plateau, which are consistent with P axial orientations of the seismic origin mechanism and the measures principle stress orientations. The analysis is also given for the dynamic lithosphere evolution of the Mountain System in the Tibet Plateau.展开更多
Based on the model of grassland climate ecological productivity, the process of grassland degradation and its restoration mechanism in northern Tibetan Plateau were discussed by the model of food-chain in which the en...Based on the model of grassland climate ecological productivity, the process of grassland degradation and its restoration mechanism in northern Tibetan Plateau were discussed by the model of food-chain in which the environmental and human factors were corrected. The results of case study in Nierong County showed that: ① the climate trend of becoming warmer, more droughts and gales were conflicted with the restoration of grassland degradation, even under level of perfect management the climate ecological productivity was declined from 89. 3 kg/m^2 of 1983 to 71.8 kg/m^2 of 2003; ② from 1983 to 2003, the population increased fast, while the variation of livestock on hand was little, and the cost of its maintaining is rapid grassland degradation; ③ on the present condition of overgrazing, the livestock on hand can be maintained on the level of theoretical carrying capacity in 2033 by applying the mechanism of food-chain in grassland ecological system controlled with expected coefficients, so that to realize the policy of determining the quantity of livestock according to grass growth.展开更多
In Xizang,there is a dedicated group of people engaged in wildlife protection.Throughout the year,they traverse vast grasslands and work in forests rarely visited by ordinary people.They camp outdoors day after day,ye...In Xizang,there is a dedicated group of people engaged in wildlife protection.Throughout the year,they traverse vast grasslands and work in forests rarely visited by ordinary people.They camp outdoors day after day,year after year,trekking through mountains and rivers.Despite the hardships of living outdoors,they have no regrets or complaints,devoting their time to protecting tens of thousands of living beings.They contribute significantly to the construction of ecological civilization and the improvement of the ecological environment across Xizang.These wildlife guardians are often called the"warriors of highland elves"From April 18th to 27th,a total of 43 wildlife guardians from Nagqu,Ngari,and Xigaze in the Xizang Autonomous Region were dispatched to Beijing for a ten-day study tour program.展开更多
The intraplate uplift of the Qinghai-Tibet Plateau took place on the basis of breakup and assembly of the Precambrian supercontinent, and southward ocean-continent transition of the Proto-, Paleo-, Meso- and Neo-Tethy...The intraplate uplift of the Qinghai-Tibet Plateau took place on the basis of breakup and assembly of the Precambrian supercontinent, and southward ocean-continent transition of the Proto-, Paleo-, Meso- and Neo-Tethys during the Caledonian, Indosinian, Yanshanian and Early Himalayan movements. The intraplate tectonic evolution of the Qinghai-Tibet Plateau underwent the early stage of intraplate orogeny characterized by migrational tectonic uplift, horizontal movement and geological processes during 180-7 Ma, and the late stage of isostatic mountain building characterized by pulsative rapid uplift, vertical movement and geographical processes since 3.6 Ma. The spatial-temporal evolution of the intraplate orogeny within the Qinghai-Tibet Plateau shows a regular transition from the northern part through the central part to the southern part during 180-120 Ma, 65-35 Ma, and 25-7 Ma respectively, with extensive intraplate faulting, folding, block movement, magmatism and metallogenesis. Simultaneous intraplate orogeny and basin formation resulted from crustal rheological stratification and basin-orogen coupling that was induced by lateral viscous flow in the lower crust. This continental dynamic process was controlled by lateral flow of hot and soft materials within the lower crust because of slab dehydration and melted mantle upwelling above the subducted plates during the southward Tethyan ocean-continent transition processes or asthenosphere diapirism. Intraplate orogeny and basin formation were irrelevant to plate collision. The Qinghai-Tibet Plateau as a whole was actually formed by the isostatic mountain building processes since 3.6 Ma that were characterized by crust-scale vertical movement, and integral rapid uplift of the plateau, accompanied by isostatic subsidence of peripheral basins and depressions, and great changes in topography and environment. A series of pulsative mountain building events, associated with gravity equilibrium and isostatic adjustment of crustal materials, at 3.6 Ma, 2.5 Ma, 1.8-1.2 Ma, 0.9-0.8 Ma and 0.15-0.12 Ma led to the formation of a composite orogenic belt by unifying the originally relatively independent Himalayas, Gangdise, Tanghla, Longmenshan, Kunlun, Altyn Tagh, and Qilian mountains, and the formation of the complete Qinghai-Tibet Plateau with a unified mountain root after Miocene uplift of the plateau as a whole.展开更多
Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recogn...Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively drier, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during展开更多
The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the...The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the arid region of Northwest China; which is one of the key areas of global environmental change. A total of 13 surface pollen samples from main vegetation have been collected. Pollen percentages were calculated in all samples. In order to reveal the relationship between pollen composition and the vegetation types from which the soil samples have been collected, Detrended Correspondence Analysis (DCA) ordination method was employed on the pollen data. The results show that dominating vegetation types can be recognized by their pollen spectra: Picea crassifolia forest, alpine shrub and alpine meadow as well. Altitude and temperature determine the distribution of the surface pollen and the vegetation. The good agreement between modern vegetation and surface samples across this area provides a measure of the reliability of using pollen data to reconstruct paleoenvironment and paleovegetation patterns in this or other similar regions. However the loss of Betula pollen in forest needs further investigation. Pollen oxidation is the most important factor contributing to the damage of modern pollen in the study area. Pollen concentrations decrease with the increase of pH values of soils, and decrease sharply when the pH exceeds 7.6.展开更多
文摘Three global tectonic systems that formed since the middle Jurassic (160Ma ago)are outlined based on the global map of the Cenozoic and Mesozoic tectonics edited by Ma Zongjin et al.(1996).They are the circum\|Pacific tectonic system,the mid\|ocean ridge tectonic system and the intra\|continental tectonic system of the north hemisphere.The map shows that about 80% of the total length of the continental orogens are concentrate on the north hemisphere of the earth,of which a latitudinal mountain\|plateau chain occur within a zone between north latitude 20°and 50°.Seismic and volcanic activities demonstrate that the intracontinental tectonic system on the north hemisphere is still active.Whilst distribution of the continental deep\|focus earthquakes and almost ultra high\|pressure rock found so far over the World,that are assumed both related to recent or previous deep subduction of continent,along with this zone.The latitudinal mountain\|plateau chain is subdivided into four active tectonic region of Qinghai—Xizang(Tibet),Iranian,eastern mediterranean and North American,both characterized by an individual similar mountain\|plateau\|basin structure with major active boundaries or controlling faults (Fig.1).These active regions are all close to primary dynamic boundaries of continent\|continent collision.Solution of source mechanisms shows that regional tectonic stress field in these regions are dominated by a nearly NS or NNE—SSW direction compression corresponding to a local plate motions and a global compressive zone.Correlation between the formation of the continental latitudinal mountain\|plateau chain on north hemisphere and the oceanic plate tectonics is discussed using the information of the “Map of Magnetic Lineations of the World’s Ocean Basins (Cande et al.,1989)”and the Cenozoic and Mesozoic tectonic evolution in the continents.Total 49 accretion units formed during 6 accretion stages of the ocean spreading in three chief oceans (the Pacific,the India and the Atlantic)si nce 160Ma ago,are subdivided.The distinguished oceanic accretion tectonics in combination with the geometrical and kinematics data of adjust continental f ragments allowed outline of the development of the continental latitudinal tecto nic zone of north hemisphere.Whilst,two global asymmetrical geodynamic systems of north\|south an east\|west direction,that may be composed of meridional conve ction,latitudinal convection and inertial flow resulting from the variation of the Earth’s rotational velocity,are used to discuss on the two global geodynamic systems in which the intracontinental latitudinal tectonic zone developed.
基金Supported by National Natural Science Foundation of China(40901057)Key Project of Chinese National Programs for Fundamental Research and Development(2010CB951704)~~
文摘The study area lies in the Dadu River drainage area in upstream Yangtze River.The spatial distribution of subalpine coniferous forests in 1989 and 2009 was extracted by means of a combined method of object orientation and visual interpretation,and then the overlaying analysis of these data was conducted.The type and spatial location of succession were discovered and served as the sample of dependant variable.Meanwhile,supported by GIS technology and based on DEM and thematic data,the eight variables including altitude,slope,sin and cosin of aspect,curvity of land surface,and distance to residential area,cultivated land and road were extracted served as the sample of spatial succession of subalpine coniferous forests to fit Logistic Regression,and then the contribution of each independent variable as well as the spatial property of the occurrence probability of succession was calculated.The results suggested that,during the succession of subalpine coniferous forests to meadow,the closer to the residential area and cultivated land,the greater the contribution to succession is.In particular,when the distance to the residential area decreases by one unit,the probability for its conversion to meadow will be increased by 1.15 times.During the succession of subalpine coniferous forests to deciduous-broadleaved shrubs,the sin of aspect and distance to residential area contribute more,and the probability of succession increases with increasing degree of northwardness,i.e.when the degree of northwardness increases by one unit,the probability will be increased by 1.2 times.The quantitative analysis of spatial succession property of subalpine coniferous forests will supply scientific basis to the protection and restoration of subalpine coniferous forests.
基金supported by the National Natural Science Foundation of China(No.41861013)Youth Scholar Scientific Capability Promoting Project of Northwest Normal University(No.NWNU-LKQN-14-4)and(No.DD20190515)the Comprehensive Remote Sensing Survey of Glacier Changes and Glacial Lake Outburst Disasters in the Tibetan Plateau Project of China Geological Survey(No.121201203000160012)
文摘To improve our knowledge of glacier change in the Tanggula Mountains located in the northeast of the Tibetan Plateau,we delineated outlines of the glaciers in 1991 and 2015 using Landsat TM/OLI images and compared them with the reported glacier data in the First Chinese Glacier Inventory in 1969 and the Second Chinese Glacier Inventory in 2007.These comparisons showed that the glacier area and ice volume decreased by 524.8 km2 and 37 km3,respectively.The majority of the glacier area loss was concentrated in the area class of 1-5 km2,between 5300 m and 5500 m in elevation,on north and east facing slopes and in the Dam Qu River basin.These glacier changes exhibited spatial and temporal differences.The glacier retreat rate gradually increased from 1969 to 2015,and the rate in the east was higher than that in the west.From 1969 to 2015,the warming rate in the Tanggula Mountains was 0.38°C/10a,while the annual precipitation only increased by 0.4%.The slight increase in the amount of precipitation made a limited contribution to glacier change,while the change in temperature led to noticeable shrinkage of the glaciers.Contrary to the retreat or stagnation of most glaciers in the study area,there were 10 glaciers that experienced clear advance in 1986-2015 with noticeable increases in both area and length.Whether or not these 10 glaciers are surge glaciers requires further study.
基金financially supported by the National Natural Science Foundation of China(Nos.41671005,41230743 and 41501068)the Distinguished Professor Programme of the Liaoning Province
文摘We present geomorphological evidence for multiple glacial fluctuations during the Quaternary in the Taniantaweng Mountain, which is situated at the transition zone of the southeastern Qinghai-Tibet Plateau and the Yunnan-Guizhou Plateau. To reconstruct the history of glacial evolution during the Quaternary Glaciation, we present a ~13000 km^2 geomorphologic map(1:440,000) for the Quaternary glaciations, as well as three electron spin resonance(ESR) ages and three optically stimulated luminescence(OSL) ages from the landforms. By integrating these with ages from previous studies, four major glacial advances are identified during marine oxygen isotope stages(MIS) 6, 3, 2 and 1. This glacial chronology is in reasonable agreement with existing glacial chronologies from other parts of the Hengduan Mountains and surrounding mountains. Glaciers had extended to the Yuqu River during the glacial maximum advance(MIS 6), but became successively more restricted from MIS 3 to MIS 1. The glacial distribution show that precipitation brought by the south Asian monsoon might play a primary role in driving glacial advances during the last glacial period in the southeastern Qinghai-Tibet Plateau.
基金supported by the National Natural Science Foundation of China(Grant No.41501079 and 91647103)Funded by State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZQ-43)+1 种基金the Chinese Academy of Sciences(CAS)Key Research Program(Grant No.KZZD-EW-13)the Foundation for Excellent Youth Scholars of NIEER,CAS
文摘The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions.Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study.The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree(CART) is adopted to identify the main controlling factors influencing the soil moisture movement. The relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis(CCA). The results show that: 1) Due to the terrain slope and the freezing-thawing process, the horizontal flow weakens in the freezing period. The vertical migration of the soil moisture movement strengthens. It will lead to that the soil-moisture content in the up-slope is higher than that in the down-slope. The conclusion is contrary during the melting period. 2) Elevation, soil texture, soil temperature and vegetation coverage are the main environmental factors which affect the slopepermafrost soil-moisture. 3) Slope, elevation and vegetation coverage are the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20 cm. It is complex at the middle and lower depth.
基金supported by the National Natural Science Foundation of China(40576001 and 40825017)the Chinese Academy of Sciences(KZCX3SW344 and 100 Talents Project)+1 种基金the Korean Research Council of Public Science and Technology(PP07010)the National Key Technology R&D Program(2006BAB18B01).
文摘The topographic maps of 1:50,000 scales,aerial photographs taken in 1966,one Landsat image taken in 1999,and SRTM data from 2000 were used to quantify the losses in area and volume of the glaciers on the Su-lo Mountain,in the northeastern Tibetan Plateau,China in the past 30 years.The total glacier area decreased from 492.9km2 in 1966 to 458.2km2 in 1999.The volume loss of the studied glaciers reached 1.4 km3 from 1966 to 2000.This agrees with documented changes in other mountain glaciers of the whole Tibetan Plateau.
基金funded by the National Natural Science Foundation of China(Grant Nos.41372114,41502116,41340005,41172162,40972083,40841010)a research project of the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Grant No.SK-0801)
文摘This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts's flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier.
基金the Project of the National Natural Science Foudation of China (Grant No.41372114,41340005,41172162,40972083)
文摘We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m.
基金supported by the National Natural Science Foundation of China(41972119)the Foundation of Chinese Academy of Geological Sciences(DZLXJK202104)the Geological Investigation Project of the China Geological Survey(DD20160060,DD20190018).
文摘Daluo Mountains lie at front of the arcuate tectonic belt at the northeastern margin of the Tibetan Plateau,and are the landform boundary zone between the active Tibetan Plateau and the stable North China Craton.Studying of the late Cenozoic uplift evolution of Daluo Mountains is important for understanding the expansion mechanism of the northeastern margin of the Tibetan Plateau and its influence on the western North China Craton.In this study,the late Cenozoic uplift of Daluo Mountains is constructed from the development of the late Cenozoic alluvial fan around Daluo Mountains.The entire sedimentary sequence and framework of the fan was revealed by the newly obtained drilling core data.The cosmogenic nuclide,optically stimulated luminescence,and detrital zircon U-Pb dating results provide new evidences for discussion about the initial timing of the late Cenozoic uplift of Daluo Mountains and the key stages of uplift during the Pleistocene.The late Cenozoic alluvial fan at front of Daluo Mountains overlies a set of fluvial-facies strata;therefore,development of the alluvial-fan marks the start of late Cenozoic uplift of Daluo Mountains.The timing of this event can be constrained to~4.64 Ma.Two extensive gravel layers(dated to ca.0.76–0.6 Ma and~0.05 Ma)developed during the Pleistocene,indicating two episodes of considerable uplift.This study provides a new time scale for the uplift and expansion of the arcuate tectonic belt at the northeastern margin of the Tibetan Plateau.
基金the financial support of the National Natural Science Foundation of China(42176212,41976074 and 41302034)the Marine S&T Fund of Shandong Province for Laoshan Laboratory(2021QNLM020002)the Marine Geological Survey Program(DD20221704)。
文摘The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.
基金Sponsored by General Program of National Natural Science Foundation of China(51878591)Scientific Research Foundation of Department of Education of Yunnan Province(2020Y0019)Yunnan University Graduate Research and Innovation Fund Project(2019139).
文摘Jiayin Town,Honghe Prefecture,Yunnan Province is composed of four elements,forest,water,farmland and village.The highly adaptive human settlement environmental features of ecologyproduction-living space reflect the adaptability of ethnic settlements on plateaus and mountains to the natural environment and geographical conditions.In this article,based on the unique natural environment and regional characteristics of Jiayin Town,the background features of the human settlement environment,the features of altitude,slope and aspect,the spatial features of forests and grasslands and the features of farmland and villages were analyzed,and design concepts of coordinating and integrating the development of ecology-production-living space,integrating and transforming natural resources into human settlement environmental resources and establishing village public awareness and the design strategies of cultivating culture with life and adopting things with rural quality were proposed,in order to provide scientifi c basis for the protection and development of the plateau and mountain ethnic villages and ensure their harmonious and orderly development.
文摘1. The environmental quality of the Loess Plateau and Liupanshan mountainous area in Ningxia The landuse structure in the studied region was very irrational in 1970s, the propor-tions covered by farming, forestry and animal husbandry are separately 50.91%, 6.32% and33.3%. Since 1980s, the farmland has been returned back to forestry and pasture so that
基金The National Key Technology Research and Development ProgramExternal Cooperation Program of the Chinese Academy of Sciences[grant number GJHZ0954]+1 种基金National Basic Research Program of China[grant number 2005CB422006]National Natural Science Foundation of China[grant number 40901057]
文摘The main objective of this study is to simulate the potential vegetation types on the basis of environmental parameters.The paper took Barkam County in a mountainous region of the Eastern Tibetan Plateau as the study area.The vegetation distribution was mapped in 1994 and 2007 based on TM remote sensing images by object-oriented interpretation method.We overlaid the two maps to find out the vegetation patches which have not changed,and took them as stable types.Fifty per cent of the stable patches were randomly sampled to operate the logistic regression with related environmental parameters;others were used as test data of simulated results.Seven environmental parameters were mapped,including elevation,slope,aspect,surface curvature,solar radiation,temperature and precipitation,based on DEM data and meteorological site data by GIS technology.The relationship between the spatial distribution of vegetation and environmental variables were quantified by logistic regression.The distribution probabilities of each vegetation type were calculated.Finally,the spatial distribution of potential vegetation was simulated.This research can provide a scientific basis for vegetation restoration and ecological construction in this area.
文摘The southeast Qinghaicozang (Tibetan) Plateau is a physcal mpon ofvery complicated eco-envirorunent with optimum hydrothermal conditions. Thisregon conains not ouly vast expanse of alpine soils but also abounds in mosttypes of Chinese forest soils. The distributon and tallization of soils presents avery evident horizontal-vertical zonality. At present, panial soil resources arebeing damaged and the mountain ecology also tends to be instable. So rationalcuttin and forest conservation, barren mountain afferestation, retuming thecultivated land on stop slopes to forest, controlled graking, and soil ameliorationconstitute importan means for rational use of soil resources and improvement andstabilization of mountain ecology in tyis region
文摘Tibet Plateau in mountain system is becoming one of the focuses of global technique research, because its crust is marvelous thick, which is twice of the normal thickness of mountain system in lithosphere, and its rapid raise from the Quaternary. By using a finite element analysis software ABAQUS, the numeric analysis has been carried out and presented in this paper for the lithosphere stress field. It is the first time to use the displacement loading in the simulation of Tibet Plateau. During the analysis, the deformed elements are used to simulate the structure band, and friction mechanism is used to model the fracture band. The boundary conditions are given according to the boundary displacements around the Plateau. The stress and displacement distributions are obtained for the geological evolution of the plateau, which are consistent with P axial orientations of the seismic origin mechanism and the measures principle stress orientations. The analysis is also given for the dynamic lithosphere evolution of the Mountain System in the Tibet Plateau.
文摘Based on the model of grassland climate ecological productivity, the process of grassland degradation and its restoration mechanism in northern Tibetan Plateau were discussed by the model of food-chain in which the environmental and human factors were corrected. The results of case study in Nierong County showed that: ① the climate trend of becoming warmer, more droughts and gales were conflicted with the restoration of grassland degradation, even under level of perfect management the climate ecological productivity was declined from 89. 3 kg/m^2 of 1983 to 71.8 kg/m^2 of 2003; ② from 1983 to 2003, the population increased fast, while the variation of livestock on hand was little, and the cost of its maintaining is rapid grassland degradation; ③ on the present condition of overgrazing, the livestock on hand can be maintained on the level of theoretical carrying capacity in 2033 by applying the mechanism of food-chain in grassland ecological system controlled with expected coefficients, so that to realize the policy of determining the quantity of livestock according to grass growth.
文摘In Xizang,there is a dedicated group of people engaged in wildlife protection.Throughout the year,they traverse vast grasslands and work in forests rarely visited by ordinary people.They camp outdoors day after day,year after year,trekking through mountains and rivers.Despite the hardships of living outdoors,they have no regrets or complaints,devoting their time to protecting tens of thousands of living beings.They contribute significantly to the construction of ecological civilization and the improvement of the ecological environment across Xizang.These wildlife guardians are often called the"warriors of highland elves"From April 18th to 27th,a total of 43 wildlife guardians from Nagqu,Ngari,and Xigaze in the Xizang Autonomous Region were dispatched to Beijing for a ten-day study tour program.
基金supported by the China National Science Foundation (Grant No: 40572113)China national key basic research program for earlier stage study (Grant No: 2005CCA05600)
文摘The intraplate uplift of the Qinghai-Tibet Plateau took place on the basis of breakup and assembly of the Precambrian supercontinent, and southward ocean-continent transition of the Proto-, Paleo-, Meso- and Neo-Tethys during the Caledonian, Indosinian, Yanshanian and Early Himalayan movements. The intraplate tectonic evolution of the Qinghai-Tibet Plateau underwent the early stage of intraplate orogeny characterized by migrational tectonic uplift, horizontal movement and geological processes during 180-7 Ma, and the late stage of isostatic mountain building characterized by pulsative rapid uplift, vertical movement and geographical processes since 3.6 Ma. The spatial-temporal evolution of the intraplate orogeny within the Qinghai-Tibet Plateau shows a regular transition from the northern part through the central part to the southern part during 180-120 Ma, 65-35 Ma, and 25-7 Ma respectively, with extensive intraplate faulting, folding, block movement, magmatism and metallogenesis. Simultaneous intraplate orogeny and basin formation resulted from crustal rheological stratification and basin-orogen coupling that was induced by lateral viscous flow in the lower crust. This continental dynamic process was controlled by lateral flow of hot and soft materials within the lower crust because of slab dehydration and melted mantle upwelling above the subducted plates during the southward Tethyan ocean-continent transition processes or asthenosphere diapirism. Intraplate orogeny and basin formation were irrelevant to plate collision. The Qinghai-Tibet Plateau as a whole was actually formed by the isostatic mountain building processes since 3.6 Ma that were characterized by crust-scale vertical movement, and integral rapid uplift of the plateau, accompanied by isostatic subsidence of peripheral basins and depressions, and great changes in topography and environment. A series of pulsative mountain building events, associated with gravity equilibrium and isostatic adjustment of crustal materials, at 3.6 Ma, 2.5 Ma, 1.8-1.2 Ma, 0.9-0.8 Ma and 0.15-0.12 Ma led to the formation of a composite orogenic belt by unifying the originally relatively independent Himalayas, Gangdise, Tanghla, Longmenshan, Kunlun, Altyn Tagh, and Qilian mountains, and the formation of the complete Qinghai-Tibet Plateau with a unified mountain root after Miocene uplift of the plateau as a whole.
文摘Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively drier, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during
基金National Key Project for Basic Research on Tibetan Plateau, No.2005CB422004 Knowledge Innovation Project of CAS, No.KZCX3-SW-339
文摘The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the arid region of Northwest China; which is one of the key areas of global environmental change. A total of 13 surface pollen samples from main vegetation have been collected. Pollen percentages were calculated in all samples. In order to reveal the relationship between pollen composition and the vegetation types from which the soil samples have been collected, Detrended Correspondence Analysis (DCA) ordination method was employed on the pollen data. The results show that dominating vegetation types can be recognized by their pollen spectra: Picea crassifolia forest, alpine shrub and alpine meadow as well. Altitude and temperature determine the distribution of the surface pollen and the vegetation. The good agreement between modern vegetation and surface samples across this area provides a measure of the reliability of using pollen data to reconstruct paleoenvironment and paleovegetation patterns in this or other similar regions. However the loss of Betula pollen in forest needs further investigation. Pollen oxidation is the most important factor contributing to the damage of modern pollen in the study area. Pollen concentrations decrease with the increase of pH values of soils, and decrease sharply when the pH exceeds 7.6.