Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery...Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear.In the present study,we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells.We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury,decreased expression of the microglial pyroptosis markers NLRP3,GSDMD,caspase-1,and interleukin-1β,promoted axonal and myelin regeneration,and inhibited the formation of glial scars.In addition,in a lipopolysaccharide-induced BV2 microglia model,conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway.These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway,thereby promoting the recovery of neurological function after spinal cord injury.Therefore,conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.展开更多
Prion diseases are infectious and fatal neurodegenerative diseases.The pathogenic agent is an abnormal prion protein aggregate.Microglial activation in the centre nervous system is a characteristic feature of prion di...Prion diseases are infectious and fatal neurodegenerative diseases.The pathogenic agent is an abnormal prion protein aggregate.Microglial activation in the centre nervous system is a characteristic feature of prion disease.In this study,we examined the effect of PrP 106-126 on PrP mRNA gene expression in Mouse microglia cells BV-2 by real-time quantitative PCR.PrP mRNA expression level was found to be significantly increased after 18 h exposure of BV-2 cells to PrP 106-126,with 3-fold increase after 18 h and 4.5-fold increase after 24 h and BV-2 cells proliferating occurred correspondingly.Our results provide the first in vitro evidence of the increase of PrP mRNA levels in microglial cells exposed to PrP 106-126,and indicate that microglial cells might play a critical role in prion pathogenesis.展开更多
Little is known about whether tamoxifen (TAM) can affect resting state microglia apoptosis and about the cellular mechanism that may account for this. To explore this question, we incubated the microglia cell line BV-...Little is known about whether tamoxifen (TAM) can affect resting state microglia apoptosis and about the cellular mechanism that may account for this. To explore this question, we incubated the microglia cell line BV-2 cells with TAM at different concentrations. Cell viability was assessed by the MTT assay, and flow cytometric analysis was performed to detect the cell apoptosis rate. Furthermore, mitochondrial membrane potential (Δψm) was tested by flow cytometry, and Bax, Bcl-2, Fas, and Fas-L expression was detected by Western blot. The results demonstrated that TAM decreased cell viability and induced apoptosis of BV-2 cells in a concentration- and time-dependent manner. In addition, disruption of Δψm was followed by up-regulated expression of pro-apoptotic Bax, Fas and Fas-L, and down-regulated expression of anti-apoptotic Bcl-2. These results indicate that TAM may induce apoptosis of BV-2 cells through both mitochondria- and death receptor-mediated pathways.展开更多
BACKGROUND: Microglia are very sensitive to environmental changes, often becoming activated by pathological conditions. Activated microglia can exert a dual role in injury and repair in various diseases of the centra...BACKGROUND: Microglia are very sensitive to environmental changes, often becoming activated by pathological conditions. Activated microglia can exert a dual role in injury and repair in various diseases of the central nervous system, including cerebral ischemia, Parkinson's disease, and Alzheimer's disease. OBJECTIVE: An immortal microglial cell line, BV2, was treated with varying concentrations of lipopolysaccharide (LPS) to induce a pathological situation. Supernatant was harvested and incubated with bone marrow mesenchymal stem cells and, concomitantly, bone marrow mesenchymal stem cell differentiation was observed. DESIGN: A controlled observation, in vitro experiment. SETTING: Department of Neurology, First Affiliated Hospital of China Medical University. MATERIALS: Five male 2-3-week-old Sprague Dawley rats were purchased from Animal Laboratory Center of China Medical University and included in this study. The protocol was performed in accordance with ethical guidelines for the use and care of animals. The microglial cell line BV2 was produced by Cell Research Institute of Chinese Academy of Sciences. LPS was produced by Sigma Company, USA. METHODS: This study was performed in the Central Laboratory of China Medical University from September 2006 to March 2007. Rat femoral and tibial bone marrow was collected for separation and primary culture of bone marrow mesenchymal stem cells. Bone marrow mesenchymal stem cell cultures were divided into 5 groups: control group, non-activated group, as well as low-, medium-, and high-dose LPS groups. In the control group, bone marrow mesenchymal stem cells were cultured with Dulbecco's modified Eagle's medium (DMEM) supplemented with fetal bovine serum (volume fraction 0. 1). In the non-activated group, bone marrow mesenchymal stem cells were incubated with non-activated BV2 supernatant. In the low-, medium-, and high-dose LPS groups, bone marrow mesenchymal stem cells were incubated with LPS (0.01,0.1 and 1 μg/L, respectively)-activated BV2 supernatant. MAIN OUTCOME MEASURES: Expression of glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE) in bone marrow mesenchymal stem cells was detected by immunofluorescence staining. RESULTS: GFAP-positive cells were detected in each group; however, the greatest number were found in the high-dose LPS group. The number of GFAP-positive cells was significantly greater in the high- and medium-dose groups, compared to the control, non-activated, and low-dose LPS groups (P 〈 0.05). However there was no significant difference between the medium- and high-dose LPS groups (P 〉 0.05). NSE-positive cells were also detected in each group. However, there was no significant difference between any two groups (P 〉 0.05). CONCLUSION: Microglia, when activated to some ertent, could induce neuroglial cell differentiation from bone marrow mesenchymal stem cells; however, they did not exhibit the capacity to markedly promote neuronal cell differentiation. When microglia are activated, the capacity to induce bone marrow mesenchymal stem cell differentiation reaches a peak level, but is not increased with greater activation rates.展开更多
Exosomes derived from bone marrow mesenchymal stem cells can inhibit neuroinflammation through regulating microglial phenotypes and promoting nerve injury repair.However,the underlying molecular mechanism remains uncl...Exosomes derived from bone marrow mesenchymal stem cells can inhibit neuroinflammation through regulating microglial phenotypes and promoting nerve injury repair.However,the underlying molecular mechanism remains unclear.In this study,we investigated the mechanism by which exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation.Our in vitro co-culture experiments showed that bone marrow mesenchymal stem cells and their exosomes promoted the polarization of activated BV2 microglia to their anti-inflammatory phenotype,inhibited the expression of proinflammatory cytokines,and increased the expression of anti-inflammatory cytokines.Our in vivo experiments showed that tail vein injection of exosomes reduced cell apoptosis in cortical tissue of mouse models of traumatic brain injury,inhibited neuroinflammation,and promoted the transformation of microglia to the anti-inflammatory phenotype.We screened some microRNAs related to neuroinflammation using microRNA sequencing and found that microRNA-181b seemed to be actively involved in the process.Finally,we regulated the expression of miR181b in the brain tissue of mouse models of traumatic brain injury using lentiviral transfection.We found that miR181b overexpression effectively reduced apoptosis and neuroinflamatory response after traumatic brain injury and promoted the transformation of microglia to the anti-inflammatory phenotype.The interleukin 10/STAT3 pathway was activated during this process.These findings suggest that the inhibitory effects of exosomes derived from bone marrow mesenchymal stem cells on neuroinflamation after traumatic brain injury may be realized by the action of miR181b on the interleukin 10/STAT3 pathway.展开更多
Diterpene ginkgolides meglumine injection(DGMI),a kind of Ginkgo biloba special extract injection,is now used for the treatment of ischemic stroke in convalescence.In the present study,we aimed to confirm whether DGMI...Diterpene ginkgolides meglumine injection(DGMI),a kind of Ginkgo biloba special extract injection,is now used for the treatment of ischemic stroke in convalescence.In the present study,we aimed to confirm whether DGMI could suppress inflammatory responses and apoptosis and explore the potential mechanisms underlying these effects.Cell viability and lactate dehydrogenase(LDH)release were measured by MTS and LDH assays after the cells were exposed to oxygen-glucose deprivation/reoxygenation(OGD/R).The extent of anti-apoptotic effect of DGMI was detected by flow cytometry using Annexin V-FITC/PI double staining assay kit.Pro-inflammatory cytokines,including TNF-α,IL-1β,IL-6 and IL-10,were quantified by a specific Bio-Plex ProTM Reagent Kit.Additionally,activities of TLR2/4,NF-κB p65,MAPK pathway and apoptosis-related proteins as well as cellular localization of NF-κB p65 were determined by Western blotting analysis and immunofluorescence staining,respectively.DGMI at 50μg/mL significantly increased the cell viability and decreased the secretion of IL-1β,IL-6,IL-10 and TNF-αin OGD/R-induced BV2 microglia cells.These effects were also confirmed by LDH assay and Annexin V-FITC/PI staining.Meanwhile,DGMI not only inhibited the protein expressions of TLR2,TLR4,MyD88,p-TAK1,p-IkBα,p-IKKβand Bak,but also decreased the cleaved caspase-3/caspase-3,Bax/Bcl-2 and cleaved PARP-1/PARP-1 ratio in OGD/R-induced BV2 microglia cells.Furthermore,OGD/R-enhanced p-JNK1/2 and p-p38 MAPK expressions and nuclear translocation of NF-κB p65 were also partially inhibited by DGMI.The present study showed that inflammatory responses were triggered in BV2 microglia cells activated by OGD/R,leading to the release of pro-inflammatory cytokines and apoptosis.DGMI suppressed the inflammatory response and apoptosis by regulating the TLR/MyD88/NF-κB signaling pathways and down-regulation of p-JNK1/2 and p-p38 MAPK activation.展开更多
基金supported by the Research Foundation of Technology Committee of Tongzhou District,No.KJ2019CX001(to SX).
文摘Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear.In the present study,we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells.We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury,decreased expression of the microglial pyroptosis markers NLRP3,GSDMD,caspase-1,and interleukin-1β,promoted axonal and myelin regeneration,and inhibited the formation of glial scars.In addition,in a lipopolysaccharide-induced BV2 microglia model,conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway.These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway,thereby promoting the recovery of neurological function after spinal cord injury.Therefore,conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.
基金National Natural Science Foundations ofChina (30871854)National Science and Technology Supporting Program of China (2006BAD06A13)
文摘Prion diseases are infectious and fatal neurodegenerative diseases.The pathogenic agent is an abnormal prion protein aggregate.Microglial activation in the centre nervous system is a characteristic feature of prion disease.In this study,we examined the effect of PrP 106-126 on PrP mRNA gene expression in Mouse microglia cells BV-2 by real-time quantitative PCR.PrP mRNA expression level was found to be significantly increased after 18 h exposure of BV-2 cells to PrP 106-126,with 3-fold increase after 18 h and 4.5-fold increase after 24 h and BV-2 cells proliferating occurred correspondingly.Our results provide the first in vitro evidence of the increase of PrP mRNA levels in microglial cells exposed to PrP 106-126,and indicate that microglial cells might play a critical role in prion pathogenesis.
基金supported by a grant from the National Natu-ral Science Foundation of China(No.30900449)
文摘Little is known about whether tamoxifen (TAM) can affect resting state microglia apoptosis and about the cellular mechanism that may account for this. To explore this question, we incubated the microglia cell line BV-2 cells with TAM at different concentrations. Cell viability was assessed by the MTT assay, and flow cytometric analysis was performed to detect the cell apoptosis rate. Furthermore, mitochondrial membrane potential (Δψm) was tested by flow cytometry, and Bax, Bcl-2, Fas, and Fas-L expression was detected by Western blot. The results demonstrated that TAM decreased cell viability and induced apoptosis of BV-2 cells in a concentration- and time-dependent manner. In addition, disruption of Δψm was followed by up-regulated expression of pro-apoptotic Bax, Fas and Fas-L, and down-regulated expression of anti-apoptotic Bcl-2. These results indicate that TAM may induce apoptosis of BV-2 cells through both mitochondria- and death receptor-mediated pathways.
文摘BACKGROUND: Microglia are very sensitive to environmental changes, often becoming activated by pathological conditions. Activated microglia can exert a dual role in injury and repair in various diseases of the central nervous system, including cerebral ischemia, Parkinson's disease, and Alzheimer's disease. OBJECTIVE: An immortal microglial cell line, BV2, was treated with varying concentrations of lipopolysaccharide (LPS) to induce a pathological situation. Supernatant was harvested and incubated with bone marrow mesenchymal stem cells and, concomitantly, bone marrow mesenchymal stem cell differentiation was observed. DESIGN: A controlled observation, in vitro experiment. SETTING: Department of Neurology, First Affiliated Hospital of China Medical University. MATERIALS: Five male 2-3-week-old Sprague Dawley rats were purchased from Animal Laboratory Center of China Medical University and included in this study. The protocol was performed in accordance with ethical guidelines for the use and care of animals. The microglial cell line BV2 was produced by Cell Research Institute of Chinese Academy of Sciences. LPS was produced by Sigma Company, USA. METHODS: This study was performed in the Central Laboratory of China Medical University from September 2006 to March 2007. Rat femoral and tibial bone marrow was collected for separation and primary culture of bone marrow mesenchymal stem cells. Bone marrow mesenchymal stem cell cultures were divided into 5 groups: control group, non-activated group, as well as low-, medium-, and high-dose LPS groups. In the control group, bone marrow mesenchymal stem cells were cultured with Dulbecco's modified Eagle's medium (DMEM) supplemented with fetal bovine serum (volume fraction 0. 1). In the non-activated group, bone marrow mesenchymal stem cells were incubated with non-activated BV2 supernatant. In the low-, medium-, and high-dose LPS groups, bone marrow mesenchymal stem cells were incubated with LPS (0.01,0.1 and 1 μg/L, respectively)-activated BV2 supernatant. MAIN OUTCOME MEASURES: Expression of glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE) in bone marrow mesenchymal stem cells was detected by immunofluorescence staining. RESULTS: GFAP-positive cells were detected in each group; however, the greatest number were found in the high-dose LPS group. The number of GFAP-positive cells was significantly greater in the high- and medium-dose groups, compared to the control, non-activated, and low-dose LPS groups (P 〈 0.05). However there was no significant difference between the medium- and high-dose LPS groups (P 〉 0.05). NSE-positive cells were also detected in each group. However, there was no significant difference between any two groups (P 〉 0.05). CONCLUSION: Microglia, when activated to some ertent, could induce neuroglial cell differentiation from bone marrow mesenchymal stem cells; however, they did not exhibit the capacity to markedly promote neuronal cell differentiation. When microglia are activated, the capacity to induce bone marrow mesenchymal stem cell differentiation reaches a peak level, but is not increased with greater activation rates.
基金supported by the National Natural Science Foundation of China, Nos.81971159(to LW), 81771317(to JFF)
文摘Exosomes derived from bone marrow mesenchymal stem cells can inhibit neuroinflammation through regulating microglial phenotypes and promoting nerve injury repair.However,the underlying molecular mechanism remains unclear.In this study,we investigated the mechanism by which exosomes derived from bone marrow mesenchymal stem cells inhibit neuroinflammation.Our in vitro co-culture experiments showed that bone marrow mesenchymal stem cells and their exosomes promoted the polarization of activated BV2 microglia to their anti-inflammatory phenotype,inhibited the expression of proinflammatory cytokines,and increased the expression of anti-inflammatory cytokines.Our in vivo experiments showed that tail vein injection of exosomes reduced cell apoptosis in cortical tissue of mouse models of traumatic brain injury,inhibited neuroinflammation,and promoted the transformation of microglia to the anti-inflammatory phenotype.We screened some microRNAs related to neuroinflammation using microRNA sequencing and found that microRNA-181b seemed to be actively involved in the process.Finally,we regulated the expression of miR181b in the brain tissue of mouse models of traumatic brain injury using lentiviral transfection.We found that miR181b overexpression effectively reduced apoptosis and neuroinflamatory response after traumatic brain injury and promoted the transformation of microglia to the anti-inflammatory phenotype.The interleukin 10/STAT3 pathway was activated during this process.These findings suggest that the inhibitory effects of exosomes derived from bone marrow mesenchymal stem cells on neuroinflamation after traumatic brain injury may be realized by the action of miR181b on the interleukin 10/STAT3 pathway.
文摘Diterpene ginkgolides meglumine injection(DGMI),a kind of Ginkgo biloba special extract injection,is now used for the treatment of ischemic stroke in convalescence.In the present study,we aimed to confirm whether DGMI could suppress inflammatory responses and apoptosis and explore the potential mechanisms underlying these effects.Cell viability and lactate dehydrogenase(LDH)release were measured by MTS and LDH assays after the cells were exposed to oxygen-glucose deprivation/reoxygenation(OGD/R).The extent of anti-apoptotic effect of DGMI was detected by flow cytometry using Annexin V-FITC/PI double staining assay kit.Pro-inflammatory cytokines,including TNF-α,IL-1β,IL-6 and IL-10,were quantified by a specific Bio-Plex ProTM Reagent Kit.Additionally,activities of TLR2/4,NF-κB p65,MAPK pathway and apoptosis-related proteins as well as cellular localization of NF-κB p65 were determined by Western blotting analysis and immunofluorescence staining,respectively.DGMI at 50μg/mL significantly increased the cell viability and decreased the secretion of IL-1β,IL-6,IL-10 and TNF-αin OGD/R-induced BV2 microglia cells.These effects were also confirmed by LDH assay and Annexin V-FITC/PI staining.Meanwhile,DGMI not only inhibited the protein expressions of TLR2,TLR4,MyD88,p-TAK1,p-IkBα,p-IKKβand Bak,but also decreased the cleaved caspase-3/caspase-3,Bax/Bcl-2 and cleaved PARP-1/PARP-1 ratio in OGD/R-induced BV2 microglia cells.Furthermore,OGD/R-enhanced p-JNK1/2 and p-p38 MAPK expressions and nuclear translocation of NF-κB p65 were also partially inhibited by DGMI.The present study showed that inflammatory responses were triggered in BV2 microglia cells activated by OGD/R,leading to the release of pro-inflammatory cytokines and apoptosis.DGMI suppressed the inflammatory response and apoptosis by regulating the TLR/MyD88/NF-κB signaling pathways and down-regulation of p-JNK1/2 and p-p38 MAPK activation.