期刊文献+
共找到1,187篇文章
< 1 2 60 >
每页显示 20 50 100
Investigation on the roles of equilibrium toroidal rotation during edge-localized mode mitigated by resonant magnetic perturbations
1
作者 董良康 陈少永 +3 位作者 牟茂淋 罗杨 秦晨晨 唐昌建 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期16-33,共18页
The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field mode... The effects of equilibrium toroidal rotation during edge-localized mode(ELM)mitigated by resonant magnetic perturbation(RMP)are studied with the experimental equilibria of the EAST tokamak based on the four-field model in the BOUT++code.As the two main parameters to determine the toroidal rotation profiles,the rotation shear and magnitudes were separately scanned to investigate their roles in the impact of RMPs on peeling-ballooning(P-B)modes.On one hand,the results show that strong toroidal rotation shear is favorable for the enhancement of the self-generated E×B shearing rate<ω_(E×B)>with RMPs,leading to significant ELM mitigation with RMP in the stronger toroidal rotation shear region.On the other hand,toroidal rotation magnitudes may affect ELM mitigation by changing the penetration of the RMPs,more precisely the resonant components.RMPs can lead to a reduction in the pedestal energy loss by enhancing the multimode coupling in the turbulence transport phase.The shielding effects on RMPs increase with the toroidal rotation magnitude,leading to the enhancement of the multimode coupling with RMPs to be significantly weakened.Hence,the reduction in pedestal energy loss by RMPs decreased with the rotation magnitude.In brief,the results show that toroidal rotation plays a dual role in ELM mitigation with RMP by changing the shielding effects of plasma by rotation magnitude and affecting<ω_(E×B)>by rotation shear.In the high toroidal rotation region,toroidal rotation shear is usually strong and hence plays a dominant role in the influence of RMP on P-B modes,whereas in the low rotation region,toroidal rotation shear is weak and has negligible impact on P-B modes,and the rotation magnitude plays a dominant role in the influence of RMPs on the P-B modes by changing the field penetration.Therefore,the dual role of toroidal rotation leads to stronger ELM mitigation with RMP,which may be achieved both in the low toroidal rotation region and the relatively high rotation region that has strong rotational shear. 展开更多
关键词 edge-localized mode peeling–ballooning modes resonant magnetic perturbation toroidal rotation plasma response TOKAMAK
下载PDF
A Field Study on Effects of Nitrogen Fertilization Modes on Nutrient Uptake,Crop Yield and Soil Biological Properties in Rice-Wheat Rotation System 被引量:14
2
作者 GUAN Guan TU Shu-xin +2 位作者 YANG Jun-cheng ZHANG Jian-feng YANG Li 《Agricultural Sciences in China》 CAS CSCD 2011年第8期1254-1261,共8页
Rational application of nitrogen (N) fertilizers is an important measure to raise N fertilizer recovery rate and reduce N loss.A two-year field experiment of rice-wheat rotation was employed to study the effects of ... Rational application of nitrogen (N) fertilizers is an important measure to raise N fertilizer recovery rate and reduce N loss.A two-year field experiment of rice-wheat rotation was employed to study the effects of N fertilization modes including a N fertilizer reduction and an organic manure replacement on crop yield,nutrient uptake,soil enzyme activity,and number of microbes as well as diversity of microbes.The result showed that 20% reduction of traditional N fertilizer dose of local farmers did not significantly change crop yield,N uptake,soil enzyme activity,and the number of microbes (bacteria,actinomycetes,and fungi).On the basis of 20% reduction of N fertilizer,50% replacement of N fertilizer by organic manure increased the activity of sucrose,protease,urease,and phosphatase by 46-62,27-89,33-46,and 35-74%,respectively,and the number of microbes,i.e.,bacteria,actinomycetes,and fungi by 36-150,11-153,and 43-56%,respectively.Further,organic fertilizer replacement had a Shannon's diversity index (H) of 2.18,which was higher than that of other modes of single N fertilizer application.The results suggested that reducing N fertilizer by 20% and applying organic manure in the experimental areas could effectively lower the production costs and significantly improve soil fertility and biological properties. 展开更多
关键词 rice-wheat rotation N fertilization mode organic manure replacement soil enzyme activity microbial diversity
下载PDF
Effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids by using the Lord-Shulman and dual-phase-lag models 被引量:3
3
作者 S.M.ABO-DAHAB A.M.ABD-ALLA A.A.KILANY 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第8期1135-1154,共20页
The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-la... The effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids in a generalized thermoplastic half-space are studied by using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical solutions for the displacements, stresses, temperature, diffusion concentration, and volume fraction field with different values of the magnetic field, the rotation, the gravity, and the initial stress are obtained and portrayed graphically. The results indicate that the effects of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very pronounced on the physical properties of the material. 展开更多
关键词 electromagnetic field GRAVITY field rotation initial stress voids DIFFUSION normal mode analysis Lord-Shulman (L-S) model dual-phase-lag (DPL) model
下载PDF
Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition 被引量:1
4
作者 马圣杰 徐世龙 +3 位作者 董骁 张鑫源 陈友龙 胡以华 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期459-467,共9页
The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotatio... The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotational Doppler effect.First,we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition.It is found that the rotational Doppler signal frequency spectrum will be broadened,and the bandwidth is related to the turbulence intensity.In addition,as the propagation distance increases,the bandwidth also increases.And when C_(n)^(2)≤5×10^(-15)m^(-2/3)and 2z≤2 km,the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d_(0)satisfy the relationship d=2d_(0-1).Finally,we analyze the influence of mode crosstalk on the rotational Doppler effect,and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2l·Ω/2π.This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency. 展开更多
关键词 optical rotational Doppler effect atmospheric turbulence vortex beam mode decomposition mode crosstalk
下载PDF
Research on the influence of flexible wheelset rotation effect on wheel rail contact force
5
作者 Lixia Sun Yuanwu Cai +2 位作者 Di Cheng Xiaoyi Hu Chunyang Zhou 《Railway Sciences》 2024年第3期367-387,共21页
Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different an... Purpose-Under the high-speed operating conditions,the effects of wheelset elastic deformation on the wheel rail dynamic forces will become more notable compared to the low-speed condition.In order to meet different analysis requirements and selecting appropriate models to analyzing the wheel rail interaction,it is crucial to understand the influence of wheelset flexibility on the wheel-rail dynamics under different speeds and track excitations condition.Design/methodology/approach-The wheel rail contact points solving method and vehicle dynamics equations considering wheelset flexibility in the trajectory body coordinate system were investigated in this paper.As for the wheel-rail contact forces,which is a particular force element in vehicle multibody system,a method for calculating the Jacobian matrix of the wheel-rail contact force is proposed to better couple the wheel-rail contact force calculation with the vehicle dynamics response calculation.Based on the flexible wheelset modeling approach in this paper,two vehicle dynamic models considering the wheelset as both elastic and rigid bodies are established,two kinds of track excitations,namely normal measured track irregularities and short-wave irregularities are used,wheel-rail geometric contact characteristic and wheel-rail contact forces in both time and frequency domains are compared with the two models in order to study the influence of flexible wheelset rotation effect on wheel rail contact force.Findings-Under normal track irregularity excitations,the amplitudes of vertical,longitudinal and lateral forces computed by the flexible wheelset model are smaller than those of the rigid wheelset model,and the virtual penetration and equivalent contact patch are also slightly smaller.For the flexible wheelset model,the wheel rail longitudinal and lateral creepages will also decrease.The higher the vehicle speed,the larger the differences in wheel-rail forces computed by the flexible and rigid wheelset model.Under track short-wave irregularity excitations,the vertical force amplitude computed by the flexible wheelset is also smaller than that of the rigid wheelset.However,unlike the excitation case of measured track irregularity,under short-wave excitations,for the speed within the range of 200 to 350 km/h,the difference in the amplitude of the vertical force between the flexible and rigid wheelset models gradually decreases as the speed increase.This is partly due to the contribution of wheelset's elastic vibration under short-wave excitations.For low-frequency wheel-rail force analysis problems at speeds of 350 km/h and above,as well as high-frequency wheel-rail interaction analysis problems under various speed conditions,the flexible wheelset model will give results agrees better with the reality.Originality/value-This study provides reference for the modeling method of the flexible wheelset and the coupling method of wheel-rail contact force to the vehicle multibody dynamics system.Furthermore,by comparative research,the influence of wheelset flexibility and rotation on wheel-rail dynamic behavior are obtained,which is useful to the application scope of rigid and flexible wheelset models. 展开更多
关键词 Flexible wheelset Contact points calculation rotational effects Elastic modes Wheel-rail force Papertype Researchpaper
下载PDF
Numerical solutions of rotational normal modes of a triaxial two-layered anelastic Earth
6
作者 Wenbin Shen Zhuo Yang +1 位作者 Zhiliang Guo Wenying Zhang 《Geodesy and Geodynamics》 2019年第2期118-129,共12页
The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution ... The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them. 展开更多
关键词 EARTH rotation TRIAXIAL two-layered anelastic EARTH model Compliances rotationAL normal modeS Numerical solution
下载PDF
Effect of passive structure and toroidal rotation on resistive wall mode stability in the EAST tokamak
7
作者 刘广君 万宝年 +7 位作者 孙有文 刘钺强 郭文峰 郝广周 丁斯晔 沈飙 肖炳甲 钱金平 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期523-528,共6页
If βN exceeds βNno-wall, the plasma will be unstable because of external kink and resistive wall mode (RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in t... If βN exceeds βNno-wall, the plasma will be unstable because of external kink and resistive wall mode (RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in the experimental advanced superconducting tokamak (EAST) are simulated with CHEASE and MARS codes. A model using a one-dimensional (1D) surface to present the effect of the passive plate is proved to be credible. The no wall fiN limit is about 3li, and the ideal wall βN limit is about 4.5li on EAST. It is found that the rotation near the q = 2 surface and the plasma edge affects the RWM more. 展开更多
关键词 resistive wall mode passive structure rotation
下载PDF
Influence of toroidal rotation on the tearing mode in tokamak plasmas
8
作者 Zhenghao REN Jinyuan LIU +3 位作者 Feng WANG Huishan CAI Zhengxiong WANG Wei SHEN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第6期74-80,共7页
The stabilizing mechanism of toroidal rotation on the tearing mode is studied using the 3 D toroidal resistive magnetohydrodynamic code M3 D.It is found that the dominating mechanism,either the centrifugal effect or t... The stabilizing mechanism of toroidal rotation on the tearing mode is studied using the 3 D toroidal resistive magnetohydrodynamic code M3 D.It is found that the dominating mechanism,either the centrifugal effect or the Coriolis effect, depends on the specific pressure β and rotation frequency Ω.On the premise that Ω is sufficiently large, when β is greater than a critical value,the effect of the centrifugal force is dominant, and the stabilizing effect mainly comes from the modification of equilibrium induced by the centrifugal force;when β is less than a critical value,the stabilizing effect from the Coriolis force overcomes that from the centrifugal force.However,if Ω is small, then the effect of equilibrium modification due to the centrifugal force is not significant even if β is large.Finally, the results showed that toroidal rotation shear enhances the stabilizing effect. 展开更多
关键词 tearing mode toroidal rotation resistive MHD
下载PDF
On rotational normal modes of the Earth:Resonance,excitation,convolution, deconvolution and all that
9
作者 Benjamin Fong Chao 《Geodesy and Geodynamics》 2017年第6期371-376,共6页
Earth's Coriolis force profoundly alters the eigen frequencies, eigen functions, and excitation of rotational normal modes. Some rotational modes of the solid mantle-fluid outer core-solid inner core Earth system are... Earth's Coriolis force profoundly alters the eigen frequencies, eigen functions, and excitation of rotational normal modes. Some rotational modes of the solid mantle-fluid outer core-solid inner core Earth system are confirmed observationally and some remain elusive. Here we bring together from literature assertions about an excited resonance system in terms of the Green's function and temporal convolution. We raise caveats against taking the face values of the oscillational motion which have been "masqueraded" by the convolution, necessitating deconvolution for retrieving the excitation function which reflects the true variability. Lastly we exemplify successful applications of the deconvolution in estimating resonance complex frequencies. 展开更多
关键词 rotational modes Resonance Excitation Convolution Deconvolution
下载PDF
General characteristics of the recent horizontal crustal movement in Chinese mainland 被引量:8
10
作者 顾国华 申旭辉 +3 位作者 王敏 郑贵明 方颖 李鹏 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2001年第4期384-393,共10页
In this paper, the horizontal crustal movement obtained from GPS observations in 1998 and 2000 at basic and fiducial stations in the Crustal Movement Observation Network of China (CMONOC) is introduced. A brief introd... In this paper, the horizontal crustal movement obtained from GPS observations in 1998 and 2000 at basic and fiducial stations in the Crustal Movement Observation Network of China (CMONOC) is introduced. A brief introduction of the field observations, the data processing with GAMIT/GLOBK software and the accuracy of the GPS observations is given. In average the accuracy of the results for each year is about 2 mm in the horizontal components and 5 mm in the vertical component, and the average accuracy of horizontal displacements at a station is about 3 mm. The results of crustal movement during the period from early September 1998 to mid June, 2000, including the displacements at each station with datum definition of a group of stable stations of insignificant relative movements among themselves in the eastern part of China, strains in different parts of the network and rotations in some parts, are obtained. Based on the crustal movement maps which are more complete and detailed than previous ones, the general characteristics of the recent crustal movement in Chinese mainland are discussed. During the above mentioned period of observations, the crustal deformation in the eastern part of China was relatively small and quite stable. With reference to a group of stable stations with small relative movement in the eastern part of China, the northeastern China block moved northward for about 10 mm, the South China block moved south-eastern for about 9 mm. In reference to the eastern part the northwestern part of China moved northward for about 26 mm, the Tibetan area in southwestern part of China moved mainly northward for about 32 mm. The area in Yunnan and east Tibet showed significant clockwise tectonic rotation of 0.0045 double prime or average rotational displacement of 12 mm with the rotation center at 26.5°N and 95.5°E. The North-South Seismic Belt in the middle part of China is of active and complicated deformation. The observation results show that the northward pushing by the Indian plate has still played the dominant role in the crustal movement in Chinese mainland. 展开更多
关键词 crustal movement GPS DISPLACEMENT STRAIN rotation
下载PDF
Numerical Investigation on Vortex-Induced Rotations of A Triangular Cylinder Using An Immersed Boundary Method 被引量:3
11
作者 WANG Hua-kun YAN Yu-hao +2 位作者 CHEN Can-ming JI Chun-ning ZHAI Qiu 《China Ocean Engineering》 SCIE EI CSCD 2019年第6期723-733,共11页
A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the n... A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the numerical model is established, and is verified through the benchmark problem of flow past a freely rotating rectangular body.The computation is performed for a fixed reduced mass of m~*=2.0 and the structural stiffness and damping ratio are set to zero. The effects of Reynolds number(Re=25-180) on the characteristics of VIR are studied. It is found that the dynamic response of the triangular cylinder exhibits four distinct modes with increasing Re: a rest position,periodic rotational oscillation, random rotation and autorotation. For the rotational oscillation mode, the cylinder undergoes a periodic vibration around an equilibrium position with one side facing the incoming flow. Since the rotation effect, the outset of vortex shedding from cylinder shifts to a much lower Reynolds number. Further increase in Re leads to 2 P and P+S vortex shedding modes besides the typical 2 S pattern. Our simulation results also elucidate that the free rotation significantly changes the drag and lift forces. Inspired by these facts, the effect of free rotation on flow-induced vibration of a triangular cylinder in the in-line and transverse directions is investigated. The results show that when the translational vibration is coupled with rotation, the triangular cylinder presents a galloping response instead of vortex-induced vibration(VIV). 展开更多
关键词 vortex-induced rotation triangular cylinder dynamic response vortex shedding mode immersed boundary method
下载PDF
Rolling element bearing instantaneous rotational frequency estimation based on EMD soft-thresholding denoising and instantaneous fault characteristic frequency 被引量:6
12
作者 赵德尊 李建勇 +2 位作者 程卫东 王天杨 温伟刚 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1682-1689,共8页
The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can b... The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR. 展开更多
关键词 rolling element bearing low signal-to-noise ratio empirical mode decomposition soft-thresholding denoising instantaneous fault characteristic frequency instantaneous rotational frequency
下载PDF
Application of hybrid robust three-axis attitude control approach to overactuated spacecraft——A quaternion based model 被引量:2
13
作者 A.H.Mazinan 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1740-1753,共14页
A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that th... A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that the new insights may be taken into account as decision points to outperform the available materials. It is to note that the traditional control approaches may generally be upgraded, as long as a number of modifications are made with respect to state-of-the-art, in order to propose high-precision outcomes. Regarding the investigated issues, the robust sliding mode finite-time control approach is first designed to handle three-axis angular rates in the inner control loop, which consists of the pulse width pulse frequency modulations in line with the control allocation scheme and the system dynamics. The main subject to employ these modulations that is realizing in association with the control allocation scheme is to be able to handle a class of overactuated systems, in particular. The proportional derivative based linear quadratic regulator approach is then designed to handle three-axis rotational angles in the outer control loop, which consists of the system kinematics that is correspondingly concentrated to deal with the quaternion based model. The utilization of the linear and its nonlinear terms, simultaneously, are taken into real consideration as the research motivation, while the performance results are of the significance as the improved version in comparison with the recent investigated outcomes. Subsequently, there is a stability analysis to verify and guarantee the closed loop system performance in coping with the whole of nominal referenced commands. At the end, the effectiveness of the approach considered here is highlighted in line with a number of potential recent benchmarks. 展开更多
关键词 three-axis angular rates and rotations sliding mode finite-time control approach proportional derivative based linearquadratic regulator approach dynamics and kinematics of overactuated spacecraft
下载PDF
Analysis Method and Principle of Dual-mode Electro-mechanical Variable Transmission Program 被引量:6
14
作者 LI Hongcai YAN Qingdong +1 位作者 XIANG Changle WANG Weida 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期524-529,共6页
Automotive industry,as an important pillar of the national economy,has been rapidly developing in recent years.But proplems such as energy comsumption and environmental pollution are posed at the same time.Electro-mec... Automotive industry,as an important pillar of the national economy,has been rapidly developing in recent years.But proplems such as energy comsumption and environmental pollution are posed at the same time.Electro-mechanical variable transmission system is considered one of avilable workarounds.It is brought forward a kind of design methods of dual-mode electro-mechanical variable transmission system rotational speed characteristics and dual-mode drive diagrams.With the motor operating behavior of running in four quadrants and the speed characteristics of the simple internal and external meshing single planetary gear train,four kinds of dual-mode electro-mechanical transmission system scheme are designed.And the velocity,torque and power characteristics of one of the programs are analyzed.The magnitude of the electric split-flow power is an important factor which influences the system performance,so in the parameters matching design,it needs to reduce the power needs under the first mode of the motor.The motor,output rotational speed range and the position of the mode switching point have relationships with the characteristics design of the planetary gear set.The analysis method is to provide a reference for hybrid vehicles' design.As the involved rotational speed and torque relationships are the natural contact of every part of transmission system,a theory basis of system program and performance analysis is provided. 展开更多
关键词 electro-mechanical variable transmission DUAL-mode rotational speed characteristics
下载PDF
The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium 被引量:4
15
作者 Ahmed E.Abouelregal Ashraf M.Zenkour 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期575-582,共8页
This article is concerned with the effect of rotation on the general model of the equations of the generalized thermoe- lasticity for a homogeneous isotropic elastic half-space solid, whose surface is subjected to a M... This article is concerned with the effect of rotation on the general model of the equations of the generalized thermoe- lasticity for a homogeneous isotropic elastic half-space solid, whose surface is subjected to a Mode-I crack problem. The fractional order theory of thermoelasticity is used to obtain the analytical solutions for displacement components, force stresses, and temperature. The boundary of the crack is subjected to a prescribed stress distribution and temperature. The normal mode analysis technique is used to solve the resulting non-dimensional coupled governing equations of the problem. The variations of the considered variables with the horizontal distance are illustrated graphically. Some particular cases are also discussed in the context of the problem. Effects of the fractional parameter, reinforcement, and rotation on the varia- tions of different field quantities inside the elastic medium are analyzed graphically. Comparisons are made between the results in the presence and those in the absence of fiber-reinforcing, rotating and fractional parameters. 展开更多
关键词 fiber-reinforced mode-I crack fractional order thermoelasticity theory rotating medium normalmode analysis
下载PDF
Numerical study of physical properties of resistive wall modes in tokamaks
16
作者 夏新念 刘悦 +2 位作者 刘超 何玉玲 夏国良 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期375-380,共6页
The effect of plasma with toroidal rotation on the resistive wall modes in tokamaks is studied numerically. An eigenvalue method is adopted to calculate the growth rate of the modes for changing plasma resistivity and... The effect of plasma with toroidal rotation on the resistive wall modes in tokamaks is studied numerically. An eigenvalue method is adopted to calculate the growth rate of the modes for changing plasma resistivity and plasma density distribution, as well as the diffusion time of magnetic field through the resistive wall. It is found that the resistive wall mode can be suppressed by the toroidal rotation of the plasma. Also, the growth rate of the resistive wall mode decreases when the edge plasma density is the same as the core plasma density, but it only changes slightly with the plasma resistivity. 展开更多
关键词 TOKAMAK resistive wall mode toroidal rotation plasma density distribution
下载PDF
Modeling of the influences of multiple modulated electron cyclotron current drive on NTMs in rotating plasma
17
作者 Long CHEN Jinyuan LIU +2 位作者 Ping DUAN Guangrui LIU Xingyu BIAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第2期8-14,共7页
In this work, physical models of neoclassical tearing modes (NTMs) including bootstrap current and multiple modulated electron cyclotron current drive model are applied. Based on the specific physical problems durin... In this work, physical models of neoclassical tearing modes (NTMs) including bootstrap current and multiple modulated electron cyclotron current drive model are applied. Based on the specific physical problems during the suppression of NTMs by driven current, this work compares the efficiency of continuous and modulated driven currents, and simulates the physical processes of multiple modulated driven currents on suppressing rotating magnetic island. It is found that when island rotates along the poloidal direction, the suppression ability of continuous driven current can be massively reduced due to current deposition outside the island separatrix and reverse deposition direction at the X point, which can be avoided by current drive modulation. Multiple current drive has a better suppressing effect than single current drive. This work gives realistic numerical simulations by optimizing the model and parameters based on the experiments, which could provide references for successful suppression of NTMs in future advanced tokamak such as international thermonuclear experimental reactor. 展开更多
关键词 neoclassical tearing modes magnetic island current drive modulated rf wave plasma rotation
下载PDF
Two and Three Dimensions of Generalized Thermoelastic Medium without Energy Dissipation under the Effect of Rotation
18
作者 MohamedI A. Othman Sarhan Y. Atwa Ahmed W. Elwan 《Applied Mathematics》 2015年第5期793-805,共13页
The purpose of this paper is to study the effect of rotation on the general three-dimensional model of the equations of the generalized thermoelasticity for a homogeneous isotropic elastic half-space solid. The proble... The purpose of this paper is to study the effect of rotation on the general three-dimensional model of the equations of the generalized thermoelasticity for a homogeneous isotropic elastic half-space solid. The problem is studied in the context of the Green-Naghdi theory of type II (without energy dissipation). The normal mode analysis is used to obtain the expressions for the temperature, thermal stress, strain and displacement. The distributions of variables considered are represented graphically. 展开更多
关键词 GENERALIZED THERMOELASTICITY Three-Dimensional modeling rotation NORMAL mode Method Green-Naghdi Theory
下载PDF
Rotational Effect on the Propagation of Waves in a Magneto-Micropolar Thermoelastic Medium
19
作者 A.M.Abd-Alla S.M.Abo-Dahab +1 位作者 M.A.Abdelhafez A.M.Farhan 《Computers, Materials & Continua》 SCIE EI 2021年第10期205-220,共16页
The present paper aims to explore how the magnetic field,ramp parameter,and rotation affect a generalized micropolar thermoelastic medium that is standardized isotropic within the half-space.By employing normal mode a... The present paper aims to explore how the magnetic field,ramp parameter,and rotation affect a generalized micropolar thermoelastic medium that is standardized isotropic within the half-space.By employing normal mode analysis and Lame’s potential theory,the authors could express analytically the components of displacement,stress,couple stress,and temperature field in the physical domain.They calculated such manners of expression numerically and plotted the matching graphs to highlight and make comparisons with theoretical findings.The highlights of the paper cover the impacts of various parameters on the rotating micropolar thermoelastic half-space.Nevertheless,the non-dimensional temperature is not affected by the rotation and the magnetic field.Specific attention is paid to studying the impact of the magnetic field,rotation,and ramp parameter of the distribution of temperature,displacement,stress,and couple stress.The study highlighted the significant impact of the rotation,magnetic field,and ramp parameter on the micropolar thermoelastic medium.In conclusion,graphical presentations were provided to evaluate the impacts of different parameters on the propagation of plane waves in thermoelastic media of different nature.The study may help the designers and engineers develop a structural control system in several applied fields. 展开更多
关键词 Magnetic field MICROPOLAR THERMOELASTIC rotation ramp parameter normal mode analysis
下载PDF
Influence of Relative Electrode-Electrolyte Movement over Productivity for Silver Recovery from Diluted Solutions
20
作者 Mirela Ioana Iorga Marius Constantin Mirica Ionel Balcu Nicolae Mirica Dan Rosu 《Journal of Chemistry and Chemical Engineering》 2011年第4期296-304,共9页
The paper presents the influence of relative electrode-electrolyte movement over productivity for silver ions recovery by electrodeposition from diluted solutions. Wasted photographic fixing agent solution in various ... The paper presents the influence of relative electrode-electrolyte movement over productivity for silver ions recovery by electrodeposition from diluted solutions. Wasted photographic fixing agent solution in various concentrations was used. For each concentration three regimes were studied: stationary, electrode rotation with 100 rpm and electrode rotation with 300 rpm. Polarization curves were drawn and working conditions from silver recovery point of view were discussed. 展开更多
关键词 Metal recovery relative electrode-electrolyte movement electrodeposition mass transport OVERPOTENTIAL rotating electrode
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部