期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Prediction of landslide block movement based on Kalman filtering data assimilation method
1
作者 LIU Yong XU Qing-jie +2 位作者 LI Xing-rui YANG Ling-feng XU Hong 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2680-2691,共12页
Compared with the study of single point motion of landslides,studying landslide block movement based on data from multiple monitoring points is of great significance for improving the accurate identification of landsl... Compared with the study of single point motion of landslides,studying landslide block movement based on data from multiple monitoring points is of great significance for improving the accurate identification of landslide deformation.Based on the study of landslide block,this paper regarded the landslide block as a rigid body in particle swarm optimization algorithm.The monitoring data were organized to achieve the optimal state of landslide block,and the 6-degree of freedom pose of the landslide block was calculated after the regularization.Based on the characteristics of data from multiple monitoring points of landslide blocks,a prediction equation for the motion state of landslide blocks was established.By using Kalman filtering data assimilation method,the parameters of prediction equation for landslide block motion state were adjusted to achieve the optimal prediction.This paper took the Baishuihe landslide in the Three Gorges reservoir area as the research object.Based on the block segmentation of the landslide,the monitoring data of the Baishuihe landslide block were organized,6-degree of freedom pose of block B was calculated,and the Kalman filtering data assimilation method was used to predict the landslide block movement.The research results showed that the proposed prediction method of the landslide movement state has good prediction accuracy and meets the expected goal.This paper provides a new research method and thinking angle to study the motion state of landslide block. 展开更多
关键词 Landslide block movement state 6-degree of freedom pose Kalman filtering Data assimilation Baishuihe landslide
下载PDF
Study on the Horizontal Movement State of Suction Anchor Piles for Offshore Wind Power during Horizontal Pulling
2
作者 Jianping Jiang Jiaruo Gao 《World Journal of Engineering and Technology》 2022年第1期88-97,共10页
The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical si... The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical simulation study of the horizontal pullout characteristics of wind power suction anchor piles in clay layers was carried out to reveal the horizontal movement state of the anchor piles during horizontal pile pullout, the range of pile depth at the pullout point where the horizontal movement is achieved (referred to as the horizontal movement range), the relationship between the pullout load and the ultimate load during the horizontal movement, and the optimal location of the pullout point for the horizontal movement. The results show that at certain pull-out points, the anchor pile produces an overall horizontal movement state under suitable horizontal pull-out loads. The depth of the pile pull-out point for horizontal movement is in the middle and lower part of the pile, i.e. 14.2 m to 14.5 m. The horizontal pull-out load of 24,000 kN at a depth of 14.5 m within the pile horizontal movement range of 14.2m to 14.5 m is the maximum ultimate horizontal pull-out load;the optimum pull-out point depth is 14.5 m at 0.275 L (L is the pile length). For each pull-out point of the anchor pile in horizontal movement, the horizontal pull-out load in horizontal movement and the horizontal ultimate pull-out load existed and it was found that the two values were not exactly the same, the values were compared and it was found that at the optimum pull-out point the value of the ultimate horizontal pull-out load/horizontal pull-out load in horizontal movement tended to 1. 展开更多
关键词 Horizontal movement State Suction Anchor Piles Horizontal movement Range Optimum Pull-Out Point Depth Offshore Wind Power
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部