期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Probability distribution of wind power volatility based on the moving average method and improved nonparametric kernel density estimation 被引量:3
1
作者 Peizhe Xin Ying Liu +2 位作者 Nan Yang Xuankun Song Yu Huang 《Global Energy Interconnection》 2020年第3期247-258,共12页
In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling met... In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE. 展开更多
关键词 moving average method Signal decomposition Wind power fluctuation characteristics Kernel density estimation Constrained order optimization
下载PDF
Multi-scale Decomposition of Co-seismic Deformation from High Resolution DEMs:a Case Study of the 2004 Mid-Niigata Earthquake 被引量:2
2
作者 ZHAO Yu KONAGAI Kazuo FUJITA Fujitomo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第4期1013-1021,共9页
Decomposing co-seismic deformation is an immediate need for researchers who are interested in earthquake inversion analysis and geo-hazard mapping. However, conventional InSAR or digital elevation models (DEMs) imag... Decomposing co-seismic deformation is an immediate need for researchers who are interested in earthquake inversion analysis and geo-hazard mapping. However, conventional InSAR or digital elevation models (DEMs) imagery analyses only provide the displacement in the Line-of-Sight (LOS) direction or elevation changes. The 2004 Mid-Niigata earthquake in Japan provides lessons on how to decompose co-seismic deformation from two sets of DEMs. If three adjacent points undergo a rigid-body-translation movement, their co-seismic deformation can be decomposed by solving simultaneous equations. Although this method has been successfully used to discuss tectonic deformations, the algorithm needed improvement and a more rigorous algorithm, including a new definition of nominal plane, DEMs comparability improvement and matrix condition check is provided. Even with these procedures, the obtained decomposed displacement often showed remarkable scatter prompting the use of the moving average method, which was used to determine both tectonic and localized displacement characteristics. A cut-off window and a pair of band-pass windows were selected according to the regional geology and construction activities to ease the tectonic and localized displacement calculations, respectively. The displacement field of the tectonic scale shows two major clusters of large lateral components, and coincidently major visible landslides were found mostly within them. The localized displacement helps to reveal hidden landslides in the target area. As far as the Kizawa hamlet is concerned, the obtained vectors show down-slope movements, which are consistent with the observed traces of dislocations that were found in the Kizawa tunnel and irrigation wells. The method proposed has great potential to be applied to understanding post-earthquake rehabilitation in other areas. 展开更多
关键词 Co-seismic deformation digital elevation models DECOMPOSITION tectonic displacement localized displacement moving average method
下载PDF
Predicting Electric Energy Consumption for a Jerky Enterprise
3
作者 Elena Kapustina Eugene Shutov +1 位作者 Anna Barskaya Agata Kalganova 《Energy and Power Engineering》 2020年第6期396-406,共11页
Wholesale and retail markets for electricity and power require consumers to forecast electricity consumption at different time intervals. The study aims to</span><span style="font-family:Verdana;"&g... Wholesale and retail markets for electricity and power require consumers to forecast electricity consumption at different time intervals. The study aims to</span><span style="font-family:Verdana;"> increase economic efficiency of the enterprise through the introduction of algorithm for forecasting electric energy consumption unchanged in technological process. Qualitative forecast allows you to essentially reduce costs of electrical </span><span style="font-family:Verdana;">energy, because power cannot be stockpiled. Therefore, when buying excess electrical power, costs can increase either by selling it on the balancing energy </span><span style="font-family:Verdana;">market or by maintaining reserve capacity. If the purchased power is insufficient, the costs increase is due to the purchase of additional capacity. This paper illustrates three methods of forecasting electric energy consumption: autoregressive integrated moving average method, artificial neural networks and classification and regression trees. Actual data from consuming of electrical energy was </span><span style="font-family:Verdana;">used to make day, week and month ahead prediction. The prediction effect of</span><span> </span><span style="font-family:Verdana;">prediction model was proved in Statistica simulation environment. Analysis of estimation of the economic efficiency of prediction methods demonstrated that the use of the artificial neural networks method for short-term forecast </span><span style="font-family:Verdana;">allowed reducing the cost of electricity more efficiently. However, for mid-</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">range predictions, the classification and regression tree was the most efficient method for a Jerky Enterprise. The results indicate that calculation error reduction allows decreases expenses for the purchase of electric energy. 展开更多
关键词 Autoregressive Integrated moving average method Artificial Neural Networks Classification and Regression Trees Electricity Consumption Ener-gy Forecasting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部