In this article, some properties of matrices of moving least-squares approximation have been proven. The used technique is based on known inequalities for singular-values of matrices. Some inequalities for the norm of...In this article, some properties of matrices of moving least-squares approximation have been proven. The used technique is based on known inequalities for singular-values of matrices. Some inequalities for the norm of coefficients-vector of the linear approximation have been proven.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the materi...This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the material points and their vicinity instead of elements or nodes in popular topology optimization methods. Topological variables field is constructed by moving least square approximation which is used as a shape function in the meshless method. Combined with finite element analyses,not only checkerboard patterns and mesh-dependence phenomena are overcome by this continuous and smooth topological variables field,but also the locations and numbers of topological variables can be arbitrary. Parameters including the number of quadrature points,scaling parameter,weight function and so on upon optimum topological configurations are discussed. Two classic topology optimization problems are solved successfully by the proposed method. The method is found robust and no numerical instabilities are found with proper parameters.展开更多
In this paper an introduction of the moving least squares approach is presented in the context of data approximation and interpolation problems in Geodesy.An application of this method is presented for geoid height ap...In this paper an introduction of the moving least squares approach is presented in the context of data approximation and interpolation problems in Geodesy.An application of this method is presented for geoid height approximation and interpolation using different polynomial basis functions for the approximant and interpolant,respectively,in a regular grid of geoid height data in the region 16.0417°≤φ≤47.9583°and 36.0417°≤λ≤69.9582°,with increment 0.0833°in both latitudal and longitudal directions.The results of approximation and interpolation are then compared with the geoid height data from GPS-Levelling approach.Using the standard deviation of the difference of the results,it is shown that the planar interpolant,with reciprocal of distance as weight function,is the best choice in this local approximation and interpolation problem.展开更多
Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection ope...Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.展开更多
An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete alg...An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.展开更多
Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatia...Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.展开更多
The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of ...The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.展开更多
文摘In this article, some properties of matrices of moving least-squares approximation have been proven. The used technique is based on known inequalities for singular-values of matrices. Some inequalities for the norm of coefficients-vector of the linear approximation have been proven.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
文摘This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the material points and their vicinity instead of elements or nodes in popular topology optimization methods. Topological variables field is constructed by moving least square approximation which is used as a shape function in the meshless method. Combined with finite element analyses,not only checkerboard patterns and mesh-dependence phenomena are overcome by this continuous and smooth topological variables field,but also the locations and numbers of topological variables can be arbitrary. Parameters including the number of quadrature points,scaling parameter,weight function and so on upon optimum topological configurations are discussed. Two classic topology optimization problems are solved successfully by the proposed method. The method is found robust and no numerical instabilities are found with proper parameters.
文摘In this paper an introduction of the moving least squares approach is presented in the context of data approximation and interpolation problems in Geodesy.An application of this method is presented for geoid height approximation and interpolation using different polynomial basis functions for the approximant and interpolant,respectively,in a regular grid of geoid height data in the region 16.0417°≤φ≤47.9583°and 36.0417°≤λ≤69.9582°,with increment 0.0833°in both latitudal and longitudal directions.The results of approximation and interpolation are then compared with the geoid height data from GPS-Levelling approach.Using the standard deviation of the difference of the results,it is shown that the planar interpolant,with reciprocal of distance as weight function,is the best choice in this local approximation and interpolation problem.
基金supported by the National Natural Science Foundation of China(Grant No.11101454)the Natural Science Foundation of Chongqing CSTC,China(Grant No.cstc2014jcyjA00005)the Program of Innovation Team Project in University of Chongqing City,China(Grant No.KJTD201308)
文摘Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant No.11971085)the Fund from the Chongqing Municipal Education Commission,China(Grant Nos.KJZD-M201800501 and CXQT19018)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2018jcyjAX0266)。
文摘An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.
文摘Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.
基金Sponsored by the Ministerial Level Advanced Research Foundation (010896367)
文摘The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.