In this paper, dynamic simulation of a beam-like structure with a transverse open crack subjected to a random moving mass oscillator is investigated. The simultaneous effect of a crack and a random oscillator has not ...In this paper, dynamic simulation of a beam-like structure with a transverse open crack subjected to a random moving mass oscillator is investigated. The simultaneous effect of a crack and a random oscillator has not been addressed up to now. The crack in the beam at different locations and with different depths is considered as one group of damage, each as an individual imperfection. In addition, bearing immobility is considered as another type of problem in the beam. Mass, stiffness, damping and velocity of the oscillator are assumed to be random parameters. An improved perturbation technique is applied to reduce the simulation time. It was found that there is a maximum value of the variance of each uncertain parameter, in which the maximum reliability of the perturbation method can be achieved, and that this maximum value can be obtained by the Alpha-Hilber Monte-Carlo simulation method. The simulation results reveal that the mass and the velocity uncertainty cause high uncertainty in the deflection of the beam. Also, the pattern of the deflection is not affected by different random oscillator parameters, and as a result, the type of damage can be identified even with high uncertainty. Moreover, the deflection in the nodes around the mid-span of the beam provides the best information regarding the imperfections, and consequently leads to the best sensor locations in an actual experiment.展开更多
文摘In this paper, dynamic simulation of a beam-like structure with a transverse open crack subjected to a random moving mass oscillator is investigated. The simultaneous effect of a crack and a random oscillator has not been addressed up to now. The crack in the beam at different locations and with different depths is considered as one group of damage, each as an individual imperfection. In addition, bearing immobility is considered as another type of problem in the beam. Mass, stiffness, damping and velocity of the oscillator are assumed to be random parameters. An improved perturbation technique is applied to reduce the simulation time. It was found that there is a maximum value of the variance of each uncertain parameter, in which the maximum reliability of the perturbation method can be achieved, and that this maximum value can be obtained by the Alpha-Hilber Monte-Carlo simulation method. The simulation results reveal that the mass and the velocity uncertainty cause high uncertainty in the deflection of the beam. Also, the pattern of the deflection is not affected by different random oscillator parameters, and as a result, the type of damage can be identified even with high uncertainty. Moreover, the deflection in the nodes around the mid-span of the beam provides the best information regarding the imperfections, and consequently leads to the best sensor locations in an actual experiment.