We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone non...We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate展开更多
The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution varia...The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.展开更多
In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of St...In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality instead of Maximum Principle.展开更多
In this paper, we consider the semilinear equation involving the fractional Laplacian in the Euclidian space R^n:(-△)^α/2u(x) : f(xn)u^p(x), x ∈R^n(0.1)in the subcritical case with 1〈 p〈n+a/n-a.Inste...In this paper, we consider the semilinear equation involving the fractional Laplacian in the Euclidian space R^n:(-△)^α/2u(x) : f(xn)u^p(x), x ∈R^n(0.1)in the subcritical case with 1〈 p〈n+a/n-a.Instead of carrying out direct investigations on pseudo-differential equation (0.1), we first seek its equivalent form in an integral equation as below:u(x)=∫R^nG∞(x, y) f(yn) u^p(y)dy,where G∞(x, y) is the Green's function associated with the fractional Laplacian in R^n. Employing the method of moving planes in integral forms, we are able to derive the nonexistence of positive solutions for (0.2) in the subcritical case. Thanks to the equivalence, same con- clusion is true for (0.1).展开更多
In this paper, we are concerned with the following Hardy-Sobolev type system{(-?)^(α/2) u(x) =v^q(x)/|y|^(t_2) (-?)α/2 v(x) =u^p(x)/|y|^(t_1),x =(y, z) ∈(R ~k\{0}) × R^(n-k),(0.1)where 0 < α < n, 0 <...In this paper, we are concerned with the following Hardy-Sobolev type system{(-?)^(α/2) u(x) =v^q(x)/|y|^(t_2) (-?)α/2 v(x) =u^p(x)/|y|^(t_1),x =(y, z) ∈(R ~k\{0}) × R^(n-k),(0.1)where 0 < α < n, 0 < t_1, t_2 < min{α, k}, and 1 < p ≤ τ_1 :=(n+α-2t_1)/( n-α), 1 < q ≤ τ_2 :=(n+α-2 t_2)/( n-α).We first establish the equivalence of classical and weak solutions between PDE system(0.1)and the following integral equations(IE) system{u(x) =∫_( R^n) G_α(x, ξ)v^q(ξ)/|η|t^2 dξ v(x) =∫_(R^n) G_α(x, ξ)(u^p(ξ))/|η|^(t_1) dξ,(0.2)where Gα(x, ξ) =(c n,α)/(|x-ξ|^(n-α))is the Green's function of(-?)^(α/2) in R^n. Then, by the method of moving planes in the integral forms, in the critical case p = τ_1 and q = τ_2, we prove that each pair of nonnegative solutions(u, v) of(0.1) is radially symmetric and monotone decreasing about the origin in R^k and some point z0 in R^(n-k). In the subcritical case (n-t_1)/(p+1)+(n-t_2)/(q+1)> n-α,1 < p ≤ τ_1 and 1 < q ≤ τ_2, we derive the nonexistence of nontrivial nonnegative solutions for(0.1).展开更多
In this paper, we study the positive solutions for a class of integral systems and prove that all the solutions are radially symmetric and monotonically decreasing about some point. Moreover, we also obtain the unique...In this paper, we study the positive solutions for a class of integral systems and prove that all the solutions are radially symmetric and monotonically decreasing about some point. Moreover, we also obtain the uniqueness result for a special case. We use a new type of moving plane method introduced by Chen-Li-Ou [1]. Our new ingredient is the use of Hardy-Littlewood-Sobolev inequality instead of Maximum Principle.展开更多
基金supported by NSF Grant DMS-0604638Li partially supported by NSF Grant DMS-0401174
文摘We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate
文摘The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.
文摘In this paper, Liouville-type theorems of nonnegative solutions for some elliptic integral systems are considered. We use a new type of moving plane method introduced by Chen-Li-Ou. Our new ingredient is the use of Stein-Weiss inequality instead of Maximum Principle.
文摘In this paper, we consider the semilinear equation involving the fractional Laplacian in the Euclidian space R^n:(-△)^α/2u(x) : f(xn)u^p(x), x ∈R^n(0.1)in the subcritical case with 1〈 p〈n+a/n-a.Instead of carrying out direct investigations on pseudo-differential equation (0.1), we first seek its equivalent form in an integral equation as below:u(x)=∫R^nG∞(x, y) f(yn) u^p(y)dy,where G∞(x, y) is the Green's function associated with the fractional Laplacian in R^n. Employing the method of moving planes in integral forms, we are able to derive the nonexistence of positive solutions for (0.2) in the subcritical case. Thanks to the equivalence, same con- clusion is true for (0.1).
基金supported by the NNSF of China(11371056)partly supported by the NNSF of China(11501021)+1 种基金the China Postdoctoral Science Foundation(2013M540057)partly supported by Scientific Research Fund of Jiangxi Provincial Education Department(GJJ160797)
文摘In this paper, we are concerned with the following Hardy-Sobolev type system{(-?)^(α/2) u(x) =v^q(x)/|y|^(t_2) (-?)α/2 v(x) =u^p(x)/|y|^(t_1),x =(y, z) ∈(R ~k\{0}) × R^(n-k),(0.1)where 0 < α < n, 0 < t_1, t_2 < min{α, k}, and 1 < p ≤ τ_1 :=(n+α-2t_1)/( n-α), 1 < q ≤ τ_2 :=(n+α-2 t_2)/( n-α).We first establish the equivalence of classical and weak solutions between PDE system(0.1)and the following integral equations(IE) system{u(x) =∫_( R^n) G_α(x, ξ)v^q(ξ)/|η|t^2 dξ v(x) =∫_(R^n) G_α(x, ξ)(u^p(ξ))/|η|^(t_1) dξ,(0.2)where Gα(x, ξ) =(c n,α)/(|x-ξ|^(n-α))is the Green's function of(-?)^(α/2) in R^n. Then, by the method of moving planes in the integral forms, in the critical case p = τ_1 and q = τ_2, we prove that each pair of nonnegative solutions(u, v) of(0.1) is radially symmetric and monotone decreasing about the origin in R^k and some point z0 in R^(n-k). In the subcritical case (n-t_1)/(p+1)+(n-t_2)/(q+1)> n-α,1 < p ≤ τ_1 and 1 < q ≤ τ_2, we derive the nonexistence of nontrivial nonnegative solutions for(0.1).
文摘In this paper, we study the positive solutions for a class of integral systems and prove that all the solutions are radially symmetric and monotonically decreasing about some point. Moreover, we also obtain the uniqueness result for a special case. We use a new type of moving plane method introduced by Chen-Li-Ou [1]. Our new ingredient is the use of Hardy-Littlewood-Sobolev inequality instead of Maximum Principle.