期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Liouville theorems for an integral system with Poisson kernel on the upper half space 被引量:1
1
作者 DOU Jing Bo ZHANG Xiang 《Science China Mathematics》 SCIE CSCD 2016年第7期1367-1382,共16页
We investigate the Liouville theorem for an integral system with Poisson kernel on the upper half space R+n,{u(x) =2/(nωn)∫?R+n(xnf(v(y)))/(|x- y|n)dy, x ∈R+n,v(y) =2/(nωn)∫R+n(xng(u(x)))/(... We investigate the Liouville theorem for an integral system with Poisson kernel on the upper half space R+n,{u(x) =2/(nωn)∫?R+n(xnf(v(y)))/(|x- y|n)dy, x ∈R+n,v(y) =2/(nωn)∫R+n(xng(u(x)))/(|x- y|n)dx, y ∈?R+n,where n 3, ωn is the volume of the unit ball in Rn. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Hang et al.(2008).With natural structure conditions on f and g, we classify the positive solutions of the above system based on the method of moving spheres in integral form and the inequality mentioned above. 展开更多
关键词 Poisson kernel method of moving spheres regularity Kelvin transformation Liouville theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部