Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c...Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.展开更多
In wireless communication environment, the time-varying channel and angular spreads caused by multipath fading and the mobility of Mobile Stations (MS) degrade the performance of the conventional Direction-Of-Arrival ...In wireless communication environment, the time-varying channel and angular spreads caused by multipath fading and the mobility of Mobile Stations (MS) degrade the performance of the conventional Direction-Of-Arrival (DOA) tracking algorithms. On the other hand, although the DOA estimation methods based on the Maximum Likelihood (ML) principle have higher resolution than the beamforming and the subspace based methods, prohibitively heavy computation limits their practical applications. This letter first proposes a new suboptimal DOA estimation algorithm that combines the advantages of the lower complexity of subspace algorithm and the high accuracy of ML based algo- rithms, and then proposes a Kalman filtering based tracking algorithm to model the dynamic property of directional changes for mobile terminals in such a way that the association between the estimates made at different time points is maintained. At each stage during tracking process, the current suboptimal estimates of DOA are treated as measurements, predicted and updated via a Kalman state equation, hence adaptive tracking of moving MS can be carried out without the need to perform unduly heavy computations. Computer simulation results show that this proposed algorithm has better per- formance of DOA estimation and tracking of MS than the conventional ML or subspace based algo- rithms in terms of accuracy and robustness.展开更多
For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will br...For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will bring trouble for cooperative manned helicopters.In this paper,we propose a new way of tracking,where an unmanned aerial vehicle(UAV) circles on one side of the tracked target.A circular path algorithm is developed for monitoring the relative position between the UAV and the target considering the real-time range and the bearing angle.This can determine the center of the new circular path if the predicted range between the UAV and the target does not meet the monitoring requirements.A transition path algorithm is presented for planning the transition path between circular paths that constrain the turning radius of the UAV.The transition path algorithm can generate waypoints that meet the flight ability.In this paper,we analyze the entire method and detail the scope of applications.We formulate an observation angle as an evaluation index.A series of simulations and evaluation index comparisons verify the effectiveness of the proposed algorithms.展开更多
A new algorithm is developed to achieve accurate state estimation in ground moving target tracking by means of using road information. It is an adaptive variable structure interacting multiple model estimator with dyn...A new algorithm is developed to achieve accurate state estimation in ground moving target tracking by means of using road information. It is an adaptive variable structure interacting multiple model estimator with dynamic models modification (DMM VS-IMM for short). Firstly, road information is employed to modify the target dynamic models used by filter, including modification of state transition matrix and process noise. Secondly, road information is applied to update the model set of a VS-IMM estimator. Predicted state estimation and road information are used to locate the target in the road network on which the model set is updated and finally IMM filtering is implemented. As compared with traditional methods, the accuracy of state estimation is improved for target moving not only on a single road, but also through an intersection. Monte Carlo simulation demonstrates the efficiency and robustness of the proposed algorithm with moderate computational loads.展开更多
In the detection process of classic radars such as radar/lidar,the detection performance will be weakened due to the presence of background noise and loss.The quantum illumination protocol can use the spatial correlat...In the detection process of classic radars such as radar/lidar,the detection performance will be weakened due to the presence of background noise and loss.The quantum illumination protocol can use the spatial correlation between photon pairs to improve image quality and enhance radar detection performance,even in the presence of loss and noise.Based on this quantum illumination LIDAR,a theoretic scheme is developed for the detection and tracking of moving targets,and the trajectory of the object is analyzed.Illuminated by the quantum light source as Spontaneous Parametric Down-Conversion(SPDC),an opaque target can be identified from the background in the presence of strong noise.The static objects obtained by classical and quantum illumination are compared,respectively,and the advantages of quantum illumination are verified.The moving objects are taken at appropriate intervals to obtain the images of the moving objects,then the images are visualized as dynamic images,and the three-frame difference method is used to obtain the target contour.Finally,the image is performed by a series of processing on to obtain the trajectory of the target object.Several different motion situations are analyzed separately,and compared with the set object motion trajectory,which proves the effectiveness of the scheme.This scheme has potential practical application value.展开更多
Different from the traditional controller system for quadrotor tasks, the vision-based strategiesare more practical and powerful to execute more complex tasks, becoming more attractive toresearchers. In this paper, an...Different from the traditional controller system for quadrotor tasks, the vision-based strategiesare more practical and powerful to execute more complex tasks, becoming more attractive toresearchers. In this paper, an image-feature-based controller with states extracted in imagesdirectly is proposed for the quadrotor to track a moving underground target, in which suitableimage features are defined and a coupling problem between position and attitude loop is solvedby a decoupling algorithm. Moreover, the external disturbances caused by visual noise, wind, orother problems are eliminated by a robust observer with low-pass filters. A Lyapunov-based stabilitymethod is presented to prove the convergent properties of the system. Finally, a simulationusing python3.6 with realistic images is established to verify that the system is stable and withhigh performance, the results of which show the data of unmanned aerial vehicle in movingtarget tracking.展开更多
In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sampl...In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.展开更多
An dynamic system for real-time obstacle avoidance path planning of redundant robots is constructed in this paper. Firstly, the inter-frame difference method is used to identify the moving target and to calculate the ...An dynamic system for real-time obstacle avoidance path planning of redundant robots is constructed in this paper. Firstly, the inter-frame difference method is used to identify the moving target and to calculate the target area, then on the basis of color features and gradient features extracted from the target area, the feature fusion Cam-Shift mean shift algorithm is used to track target, improving the robustness of the tracking algorithm. Secondly, a parallel two-channel target identification and location method based on binocular vision is proposed, updating the target's three-dimensional information in real time. Then, a dynamic collision-free path planning method is implemented: the safety rods are removed through the intersection test, and the minimum distance is derived directly by using the coordinate values of the target in the local coordinate system of the rod. On this basis, the obstacle avoidance gain and escape velocity related to the minimum distance is established, and obstacle avoidance path planning is implemented by using the zero space mapping matrix of redundant robot. Experiments are performed to Study the efficiency of the proposed system.展开更多
基金funded by the National Natural Science Foundation of China,grant number 42074176,U1939204。
文摘Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.
文摘In wireless communication environment, the time-varying channel and angular spreads caused by multipath fading and the mobility of Mobile Stations (MS) degrade the performance of the conventional Direction-Of-Arrival (DOA) tracking algorithms. On the other hand, although the DOA estimation methods based on the Maximum Likelihood (ML) principle have higher resolution than the beamforming and the subspace based methods, prohibitively heavy computation limits their practical applications. This letter first proposes a new suboptimal DOA estimation algorithm that combines the advantages of the lower complexity of subspace algorithm and the high accuracy of ML based algo- rithms, and then proposes a Kalman filtering based tracking algorithm to model the dynamic property of directional changes for mobile terminals in such a way that the association between the estimates made at different time points is maintained. At each stage during tracking process, the current suboptimal estimates of DOA are treated as measurements, predicted and updated via a Kalman state equation, hence adaptive tracking of moving MS can be carried out without the need to perform unduly heavy computations. Computer simulation results show that this proposed algorithm has better per- formance of DOA estimation and tracking of MS than the conventional ML or subspace based algo- rithms in terms of accuracy and robustness.
基金the Deanship of Scientific Research at King Saud University through research group number(RG-1440-048)。
文摘For the automatic tracking of unknown moving targets on the ground,most of the commonly used methods involve circling above the target.With such a tracking mode,there is a moving laser spot on the target,which will bring trouble for cooperative manned helicopters.In this paper,we propose a new way of tracking,where an unmanned aerial vehicle(UAV) circles on one side of the tracked target.A circular path algorithm is developed for monitoring the relative position between the UAV and the target considering the real-time range and the bearing angle.This can determine the center of the new circular path if the predicted range between the UAV and the target does not meet the monitoring requirements.A transition path algorithm is presented for planning the transition path between circular paths that constrain the turning radius of the UAV.The transition path algorithm can generate waypoints that meet the flight ability.In this paper,we analyze the entire method and detail the scope of applications.We formulate an observation angle as an evaluation index.A series of simulations and evaluation index comparisons verify the effectiveness of the proposed algorithms.
基金Foundation item: National Natural Science Foundation of China (60502019)
文摘A new algorithm is developed to achieve accurate state estimation in ground moving target tracking by means of using road information. It is an adaptive variable structure interacting multiple model estimator with dynamic models modification (DMM VS-IMM for short). Firstly, road information is employed to modify the target dynamic models used by filter, including modification of state transition matrix and process noise. Secondly, road information is applied to update the model set of a VS-IMM estimator. Predicted state estimation and road information are used to locate the target in the road network on which the model set is updated and finally IMM filtering is implemented. As compared with traditional methods, the accuracy of state estimation is improved for target moving not only on a single road, but also through an intersection. Monte Carlo simulation demonstrates the efficiency and robustness of the proposed algorithm with moderate computational loads.
基金supported by the National Key R&D Program of China,Grant No.2018YFA0306703.
文摘In the detection process of classic radars such as radar/lidar,the detection performance will be weakened due to the presence of background noise and loss.The quantum illumination protocol can use the spatial correlation between photon pairs to improve image quality and enhance radar detection performance,even in the presence of loss and noise.Based on this quantum illumination LIDAR,a theoretic scheme is developed for the detection and tracking of moving targets,and the trajectory of the object is analyzed.Illuminated by the quantum light source as Spontaneous Parametric Down-Conversion(SPDC),an opaque target can be identified from the background in the presence of strong noise.The static objects obtained by classical and quantum illumination are compared,respectively,and the advantages of quantum illumination are verified.The moving objects are taken at appropriate intervals to obtain the images of the moving objects,then the images are visualized as dynamic images,and the three-frame difference method is used to obtain the target contour.Finally,the image is performed by a series of processing on to obtain the trajectory of the target object.Several different motion situations are analyzed separately,and compared with the set object motion trajectory,which proves the effectiveness of the scheme.This scheme has potential practical application value.
基金National Natural Science Foundation of China[61931020,62033010].
文摘Different from the traditional controller system for quadrotor tasks, the vision-based strategiesare more practical and powerful to execute more complex tasks, becoming more attractive toresearchers. In this paper, an image-feature-based controller with states extracted in imagesdirectly is proposed for the quadrotor to track a moving underground target, in which suitableimage features are defined and a coupling problem between position and attitude loop is solvedby a decoupling algorithm. Moreover, the external disturbances caused by visual noise, wind, orother problems are eliminated by a robust observer with low-pass filters. A Lyapunov-based stabilitymethod is presented to prove the convergent properties of the system. Finally, a simulationusing python3.6 with realistic images is established to verify that the system is stable and withhigh performance, the results of which show the data of unmanned aerial vehicle in movingtarget tracking.
文摘In order to track ground moving target, a variable structure interacting multiple model (VS-IMM) using mean shift unscented particle filter (MS-UPF) is proposed in this paper. In model-conditioned filtering, sample particles obtained from the unscented particle filter are moved towards the maximal posterior density estimation of the target state through mean shift. On the basis of stop model in VS-IMM, hide model is proposed. Once the target is obscured by terrain, the prediction at prior time is used instead of the measurement at posterior time; in addition, the road model set used is not changed. A ground moving target indication (GMTI) radar is employed in three common simulation scenarios of ground target: entering or leaving a road, crossing a junction and no measurement. Two evaluation indexes, root mean square error (RMSE) and average normalized estimation error squared (ANEES), are used. The results indicate that when the road on which the target moving changes, the tracking accuracy is effectively improved in the proposed algorithm. Moreover, track interruption could be avoided if the target is moving too slowly or masked by terrain.
基金supported in part by the Key Project of Chinese National Programs for Fundamental Research and Development(973program)(2013CB73300)National Natural Science Foundation of China(61573066)
文摘An dynamic system for real-time obstacle avoidance path planning of redundant robots is constructed in this paper. Firstly, the inter-frame difference method is used to identify the moving target and to calculate the target area, then on the basis of color features and gradient features extracted from the target area, the feature fusion Cam-Shift mean shift algorithm is used to track target, improving the robustness of the tracking algorithm. Secondly, a parallel two-channel target identification and location method based on binocular vision is proposed, updating the target's three-dimensional information in real time. Then, a dynamic collision-free path planning method is implemented: the safety rods are removed through the intersection test, and the minimum distance is derived directly by using the coordinate values of the target in the local coordinate system of the rod. On this basis, the obstacle avoidance gain and escape velocity related to the minimum distance is established, and obstacle avoidance path planning is implemented by using the zero space mapping matrix of redundant robot. Experiments are performed to Study the efficiency of the proposed system.