The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac...The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method.展开更多
Water level prediction of river runoff is an important part of hydrological forecasting.The change of water level not only has the trend and seasonal characteristics,but also contains the noise factors.And the water l...Water level prediction of river runoff is an important part of hydrological forecasting.The change of water level not only has the trend and seasonal characteristics,but also contains the noise factors.And the water level prediction ability of a single model is limited.Since the traditional ARIMA(Autoregressive Integrated Moving Average)model is not accurate enough to predict nonlinear time series,and the WNN(Wavelet Neural Network)model requires a large training set,we proposed a new combined neural network prediction model which combines the WNN model with the ARIMA model on the basis of wavelet decomposition.The combined model fit the wavelet transform sequences whose frequency are high with the WNN,and the scale transform sequence which has low frequency is fitted by the ARIMA model,and then the prediction results of the above are reconstructed by wavelet transform.The daily average water level data of the Liuhe hydrological station in the Chu River Basin of Nanjing are used to forecast the average water level of one day ahead.The combined model is compared with other single models with MATLAB,and the experimental results show that the accuracy of the combined model is improved by 7%compared with the traditional wavelet network under the appropriate wavelet decomposition function and the combined model parameters.展开更多
In the paper,the autoregressive moving average model for matrix time series(MARMA)is inves-tigated.The properties of the MARMA model are investigated by using the conditional least square estimation,the conditional ma...In the paper,the autoregressive moving average model for matrix time series(MARMA)is inves-tigated.The properties of the MARMA model are investigated by using the conditional least square estimation,the conditional maximum likelihood estimation,the projection theorem in Hilbert space and the decomposition technique of time series,which include necessary and suf-ficient conditions for stationarity and invertibility,model parameter estimation,model testing and model forecasting.展开更多
This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characte...This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.展开更多
文摘The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method.
文摘Water level prediction of river runoff is an important part of hydrological forecasting.The change of water level not only has the trend and seasonal characteristics,but also contains the noise factors.And the water level prediction ability of a single model is limited.Since the traditional ARIMA(Autoregressive Integrated Moving Average)model is not accurate enough to predict nonlinear time series,and the WNN(Wavelet Neural Network)model requires a large training set,we proposed a new combined neural network prediction model which combines the WNN model with the ARIMA model on the basis of wavelet decomposition.The combined model fit the wavelet transform sequences whose frequency are high with the WNN,and the scale transform sequence which has low frequency is fitted by the ARIMA model,and then the prediction results of the above are reconstructed by wavelet transform.The daily average water level data of the Liuhe hydrological station in the Chu River Basin of Nanjing are used to forecast the average water level of one day ahead.The combined model is compared with other single models with MATLAB,and the experimental results show that the accuracy of the combined model is improved by 7%compared with the traditional wavelet network under the appropriate wavelet decomposition function and the combined model parameters.
基金This paper is partially supported by the basic scientific research business expenses of Universities in Xinjiang,China[Grant Number XQZX20230057]the National Natural Science Foundation of China[Grant Number 11671142].
文摘In the paper,the autoregressive moving average model for matrix time series(MARMA)is inves-tigated.The properties of the MARMA model are investigated by using the conditional least square estimation,the conditional maximum likelihood estimation,the projection theorem in Hilbert space and the decomposition technique of time series,which include necessary and suf-ficient conditions for stationarity and invertibility,model parameter estimation,model testing and model forecasting.
基金The National Natural Science Foundation of China(No.61273236)the Natural Science Foundation of Jiangsu Province(No.BK2010239)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861061)
文摘This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.