This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagr...This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagram of traffic flow and the trajectory of train movement is used to obtain insight into the characteristic behavior of railway traffic flow. A number of simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway traffic. Not only the characteristic behavior of railway traffic flow can be reproduced, but also the simulation values of the minimum time headway are close to the theoretical values.展开更多
In this paper, we propose a new cellular automaton (CA) model for train movement simulations under mixed traffic conditions. A kind of control strategy is employed for trains to reduce energy consumption. In the pro...In this paper, we propose a new cellular automaton (CA) model for train movement simulations under mixed traffic conditions. A kind of control strategy is employed for trains to reduce energy consumption. In the proposed CA model, the driver controls the train movements by using some updated rules. In order to obtain a good insight into the evolution behaviours of the rail traffic flow, we investigate the space-time diagram of the rail traffic flow and the trajectories of the train movements. The numerical simulation results demonstrate that the proposed CA model can well describe the dynamic behaviours of the train movements. Some complex phenomena of train movements can be reproduced, such as the train delay propagations, etc.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 70225005 and 60634010, and the Science and Technology Foundation of Beijing Jiaotong University under Grant No. 2006RC044
文摘This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagram of traffic flow and the trajectory of train movement is used to obtain insight into the characteristic behavior of railway traffic flow. A number of simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway traffic. Not only the characteristic behavior of railway traffic flow can be reproduced, but also the simulation values of the minimum time headway are close to the theoretical values.
基金Project supported by the National Natural Science Foundation of China (Grant No 70471088), the National Basic Research Program of China (Grant No 2006CB705500) and the Science and Technology Foundation of Beijing Jiaotong University (Grant No 2004SM026).
文摘In this paper, we propose a new cellular automaton (CA) model for train movement simulations under mixed traffic conditions. A kind of control strategy is employed for trains to reduce energy consumption. In the proposed CA model, the driver controls the train movements by using some updated rules. In order to obtain a good insight into the evolution behaviours of the rail traffic flow, we investigate the space-time diagram of the rail traffic flow and the trajectories of the train movements. The numerical simulation results demonstrate that the proposed CA model can well describe the dynamic behaviours of the train movements. Some complex phenomena of train movements can be reproduced, such as the train delay propagations, etc.