A tubular moving-magnet linear oscillating motor(TMMLOM) has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet(PM) arrays are arranged on...A tubular moving-magnet linear oscillating motor(TMMLOM) has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet(PM) arrays are arranged on its mover in the application of a linear electro-hydrostatic actuator in more electric aircraft. The arrays are assembled by several individual segments, which lead to gaps between them inevitably. To investigate the effects of the gaps on the radial magnetic flux density and the machine thrust in this paper, an analytical model is built considering both axial and radial gaps. The model is validated by finite element simulations and experimental results.Distributions of the magnetic flux are described in condition of different sizes of radial and axial gaps. Besides, the output force is also discussed in normal and end windings. Finally, the model has demonstrated that both kinds of gaps have a negative effect on the thrust, and the linear motor is more sensitive to radial ones.展开更多
基金supports of National Basic Research Program of China(973 Program)(No.2014CB046402)National Natural Science Foundation of China(Nos.51620105010,51575019,51675019,51505015)111 Program of China
文摘A tubular moving-magnet linear oscillating motor(TMMLOM) has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet(PM) arrays are arranged on its mover in the application of a linear electro-hydrostatic actuator in more electric aircraft. The arrays are assembled by several individual segments, which lead to gaps between them inevitably. To investigate the effects of the gaps on the radial magnetic flux density and the machine thrust in this paper, an analytical model is built considering both axial and radial gaps. The model is validated by finite element simulations and experimental results.Distributions of the magnetic flux are described in condition of different sizes of radial and axial gaps. Besides, the output force is also discussed in normal and end windings. Finally, the model has demonstrated that both kinds of gaps have a negative effect on the thrust, and the linear motor is more sensitive to radial ones.