This paper describes procedure for estimation of travel time on signalized arterial roads based on multiple data sources with application of dimensionality reduction. Travel time estimation approach incorporates forec...This paper describes procedure for estimation of travel time on signalized arterial roads based on multiple data sources with application of dimensionality reduction. Travel time estimation approach incorporates forecast of transportation nodes impendence and travel time on network links. Forecasting period is two hours and the estimation is based on historical data and real time data on traffic conditions. Travel time estimation combines multivariate regression, principal component analysis, KNN (k-nearest neighbours), cross validation and EWMA (exponentially weighted moving average) methods. When comparing estimation methodologies, relevantly better results were achieved by KNN method than with EWMA method. This is true for every time interval considered except for evening time interval when signalized arterial roads were uncongested.展开更多
文摘This paper describes procedure for estimation of travel time on signalized arterial roads based on multiple data sources with application of dimensionality reduction. Travel time estimation approach incorporates forecast of transportation nodes impendence and travel time on network links. Forecasting period is two hours and the estimation is based on historical data and real time data on traffic conditions. Travel time estimation combines multivariate regression, principal component analysis, KNN (k-nearest neighbours), cross validation and EWMA (exponentially weighted moving average) methods. When comparing estimation methodologies, relevantly better results were achieved by KNN method than with EWMA method. This is true for every time interval considered except for evening time interval when signalized arterial roads were uncongested.