BiVO4, BiVO4@C3N4 and BiVO4@C3N4@GO composite photo-catalysts were synthesized, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), transmission elec...BiVO4, BiVO4@C3N4 and BiVO4@C3N4@GO composite photo-catalysts were synthesized, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area techniques. The photocatalytic activity was evaluated on the degradation of methylene blue (MB) under visible light irradiation, which denoted that the BiVO4@C3N4@GO ternary composite outperformed the binary composite BiVO4@C3N4 and BiVO4. Then the effects of catalyst dosage, initial pH value, and initial methylene blue concentration on the degradation process were investigated systematically. The improvement of visible-light photocatalytic degradation performance was attributed to the enhanced visible light absorption, larger surface area, higher adsorption ability, and prolonged lifetime of photo-generated electron-hole pairs. The recycle experiments results showed that the BiVO4@C3N4@GO composite had excellent photo-stability for MB photocatalytic degradation.展开更多
Photocatalysis is considered to be a clean, green and efficient method to purify water. In this report, we first developed a highly efficient ultrafine TiO2 nanorods/g-C3N4 nanosheets (TiO2 NR/CN NS) composites via ...Photocatalysis is considered to be a clean, green and efficient method to purify water. In this report, we first developed a highly efficient ultrafine TiO2 nanorods/g-C3N4 nanosheets (TiO2 NR/CN NS) composites via a simple hydrothermal method. Tiny TiO2 nanorods (diameter: ~1.5 nm and length: ~8.3 nm) were first loaded in situ on the CN NS by adding graphitic carbon nitride (g-C3N4) to the reaction solution. The TiO2 NR/CN NS composites present high charge separation efficiency and broader light absorbance than P25 TiO2. Furthermore, we illustrate that the TiO2 NR/CN NS catalyst possesses high performance for the photocatalytic degradation of the common and stubborn pollutants in water, such as the rhodamine B (RhB) dye and phenol. Under visible light (λ 〉 420 nm) irradiation, the apparent rate of the TiO2 NR/CN NR is 172 and 41 times higher than that of the P25 TiO2 and TiO2 NR, respectively. Additionally, we speculated that the heterojunction formed between TiO2 NR and CN NS, which is the basis for the experiments we have designed and the corresponding results. We demonstrated that reactive oxidative species such as superoxide anion radical and holes play critical roles in the degradation, and the hydroxyl radical contributes nothing to the degradation.展开更多
基金the Natural Science Foundation of Heilongjiang Province of China [QC2017005]the Province Postdoctoral Fund [LBH-Z15032]
文摘BiVO4, BiVO4@C3N4 and BiVO4@C3N4@GO composite photo-catalysts were synthesized, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area techniques. The photocatalytic activity was evaluated on the degradation of methylene blue (MB) under visible light irradiation, which denoted that the BiVO4@C3N4@GO ternary composite outperformed the binary composite BiVO4@C3N4 and BiVO4. Then the effects of catalyst dosage, initial pH value, and initial methylene blue concentration on the degradation process were investigated systematically. The improvement of visible-light photocatalytic degradation performance was attributed to the enhanced visible light absorption, larger surface area, higher adsorption ability, and prolonged lifetime of photo-generated electron-hole pairs. The recycle experiments results showed that the BiVO4@C3N4@GO composite had excellent photo-stability for MB photocatalytic degradation.
基金supported by the Beijing Municipal High Level Innovative Team Building Program(IDHT20180504)the National Natural Science Foundation of China(21671011)+4 种基金Beijing High Talent ProgramBeijing Natural Science Foundation(KZ201710005002)the Large-scale Instrument and Equipment Platform of Beijing University of TechnologyChina Postdoctoral Science FoundationBeijing Postdoctoral Research Foundation
文摘Photocatalysis is considered to be a clean, green and efficient method to purify water. In this report, we first developed a highly efficient ultrafine TiO2 nanorods/g-C3N4 nanosheets (TiO2 NR/CN NS) composites via a simple hydrothermal method. Tiny TiO2 nanorods (diameter: ~1.5 nm and length: ~8.3 nm) were first loaded in situ on the CN NS by adding graphitic carbon nitride (g-C3N4) to the reaction solution. The TiO2 NR/CN NS composites present high charge separation efficiency and broader light absorbance than P25 TiO2. Furthermore, we illustrate that the TiO2 NR/CN NS catalyst possesses high performance for the photocatalytic degradation of the common and stubborn pollutants in water, such as the rhodamine B (RhB) dye and phenol. Under visible light (λ 〉 420 nm) irradiation, the apparent rate of the TiO2 NR/CN NR is 172 and 41 times higher than that of the P25 TiO2 and TiO2 NR, respectively. Additionally, we speculated that the heterojunction formed between TiO2 NR and CN NS, which is the basis for the experiments we have designed and the corresponding results. We demonstrated that reactive oxidative species such as superoxide anion radical and holes play critical roles in the degradation, and the hydroxyl radical contributes nothing to the degradation.