The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed b...The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible.展开更多
Treatment of drilling wastewater from a sulfonated drilling mud system in the Shengli Oilfield, East China, was studied. The wastewater was deeply treated by a chemical coagulationcentrifugal separation-ozone catalyti...Treatment of drilling wastewater from a sulfonated drilling mud system in the Shengli Oilfield, East China, was studied. The wastewater was deeply treated by a chemical coagulationcentrifugal separation-ozone catalytic oxidation combined process. The factors (i.e. pH value, chemical dosage, reaction time, etc.) influencing the treatment effect were investigated, and pH = 7 was determined as optimal for the coagulation; polymeric aluminum chloride (PAC) was selected as the optimal coagulant with a dosage of 18 g/L; cationic polyacrylamide (CPAM) with molecular weight of 8 million was selected as the optimal coagulant aid with an optimum dosage of 8 mg/L; and the optimal condition of catalytic ozonation was found to be a pH of 12 and an oxidation time of 40 min. The results showed that the combined treatment process was effective. The oil content and suspended solids content of the effluent reached the first class discharge standard according to China's standard GB 8978-1996 (Integrated Wastewater Discharge Standard) and the chemical oxygen demand (COD) decreased to 195 mg/L from 2.34×10^4 mg/L after coagulation process and ozone oxidation at pH = 12 for 40 min.展开更多
Drilling muds with less environmental impact are highly desired over conventional diesel-based mud systems,especially in light of the emerging strict environmental laws.In this article,a novel oil-in-water(O/W)emulsio...Drilling muds with less environmental impact are highly desired over conventional diesel-based mud systems,especially in light of the emerging strict environmental laws.In this article,a novel oil-in-water(O/W)emulsion drilling fluid formulated with a methyl ester extracted from Indian mango seed oil was evaluated.The effect of the weight percent of different constituents of the emulsion/suspension including the oil phase,bentonite,and polyanionic cellulose polymer on the rheology and the fluid loss was examined.The methyl ester oil phase/mud system displayed superior physical,chemical,rheological and filtration properties relative to the diesel and the mango seed oil.Eco-toxicity of the methyl ester and diesel(O/W)emulsion mud systems was assessed using the acute lethal concentration test.The Indian mango methyl ester(O/W)emulsion mud displayed much less impact on fish population.Flow characteristics collected from the flow model at 85°C suggested excellent shear thinning behavior of the Indian mango methyl ester(IMME)(O/W)emulsion mud.Moreover,the IMME(O/W)emulsion displayed strong pseudoplastic behavior,an attractive feature in a drilling mud,with increasing clay content and polymer concentration.The methyl ester mud was thermally stable over a wide range of the constituent concentrations.Furthermore,a particle size analysis revealed that engineered drilling muds targeting suspension of particles with certain size range can be formulated by changing the volume fraction of the methyl ester in the mud system.展开更多
To satisfy the requirement on the separation of solid and liquid in waste drilling mud, prepare a high effective floccu-lant for high density waste drilling mud used starch, 2-Trimethylammonium ethyl methacrylate chlo...To satisfy the requirement on the separation of solid and liquid in waste drilling mud, prepare a high effective floccu-lant for high density waste drilling mud used starch, 2-Trimethylammonium ethyl methacrylate chloride (DMC) and acrylamide (AM). The result showed that when the ratio of starch, DMC and AM was 2:1:3, the weight of initiator (po-tassium persulfate) was 0.2% of the AM, reaction temperature was 65℃ and reaction time was 5h, the performance of product was the best. The water content in filter cake was 27.6% after the waste drilling mud disposed by the optimization flocculant. The flocculent effect of optimization flocculant was superior to that of other flocculant in market.展开更多
Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system ...Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system was studied, the synthesis methods and functioning mechanism of key additives were introduced, and performance evaluation of the system was performed. The rheology modifier was prepared by reacting a dimer fatty acid with diethanolamine, the primary emulsifier was made by oxidation and addition reaction of fatty acids, the secondary emulsifier was made by amidation of a fatty acid, and finally the fluid loss additive of water-soluble acrylic resin was synthesized by introducing acrylic acid into styrene/butyl acrylate polymerization. The rheology modifier could enhance the attraction between droplets, particles in the emulsion via intermolecular hydrogen bonding and improve the shear stress by forming a three-dimensional network structure in the emulsion. Lab experimental results show that the organoclay-free OBM could tolerate temperatures up to 220 ?C and HTHP filtration is less than 5 m L. Compared with the traditional OBMs, the organoclay-free OBM has low plastic viscosity, high shear stress, high ratio of dynamic shear force to plastic viscosity and high permeability recovery, which are beneficial to penetration rate increase, hole cleaning and reservoir protection.展开更多
The series connection of multistage pumping module is the common concept of deepwater riserless mud recovery drilling system. In this system, the influence of the mass of pumping module on the vibration of mud recover...The series connection of multistage pumping module is the common concept of deepwater riserless mud recovery drilling system. In this system, the influence of the mass of pumping module on the vibration of mud recovery line cannot be ignored, and the lumped mass method has been utilized to discretize the mud recovery line. Based on the analysis of different boundary conditions, the paper establishes the axial forced vibration model of the mud recovery line considering the seawater damping, and the vibration model analysis provides the universal solution to the vibration model. An example of the two-stage pumping system has been used to analyze the dynamic response of mud recovery line under different excited frequencies. This paper has the important directive significance for the application of riserless mud recovery drilling technology in deepwater surface drilling.展开更多
It is difficult to define safe drilling mud density window for shale sections.To solve this problem,the general Biot effective stress principle developed by Heidug and Wong was modified.The Weibull statistical model w...It is difficult to define safe drilling mud density window for shale sections.To solve this problem,the general Biot effective stress principle developed by Heidug and Wong was modified.The Weibull statistical model was used to characterize the hydration strainrelated strength damage.Considering drilling fluid sealing barrier on shale,a calculation method of safe drilling mud density has been established for shale formation under drilling fluid sealing-inhibition-reverse osmosis effect,combined with a flow-diffusion coupling model.The influence of drilling fluid sealing and inhibiting parameters on safe drilling mud density window was analyzed.The study shows that enhancing drilling fluid sealing performance can reduce the pore pressure transmission and solute diffusion;the inhibiting performance of drilling fluid,especially inhibition to strength damage,is crucial for the wellbore collapse pressure of shale section with significant hydration property.The improvement of drilling fluid sealing and inhibition performance can lower collapse pressure and enhance fracturing pressure,and thus making the safe drilling fluid density window wider and the collapse period of wellbore longer.If there is osmosis flow in shale,induced osmosis flow can make the gap between collapse pressure and fracturing pressure wider,and the stronger the sealing ability of drilling fluid,the wider the gap will be.The safe drilling mud density window calculation method can analyze the relationships between collapse pressure,fracturing pressure and drilling fluid anti collapse performance,and can be used to optimize drilling fluid performance.展开更多
Drilling fluids and mud additives are generally acknowledged as potential sources of contamination in deep drilling programs, as they may contain high concentration of nutrients for subsurface microorganisms. Microorg...Drilling fluids and mud additives are generally acknowledged as potential sources of contamination in deep drilling programs, as they may contain high concentration of nutrients for subsurface microorganisms. Microorganisms introduced into drilling process cause a number of problems that can lead to significant costs for the industry. Numerous studies have shown that biogenic sulfide production in oil and natural gas fields have led to a number of problems, including reservoir plugging, reservoir souring, reduced product quality, and corrosion of metal-containing equipment. The aim of this study is to determine the microbial contamination of water drilling mud and cement Mix fluid at two Saudi Aramco well SA-10 & SA-12 and to adequately perform microbial assessment for the well both wells. Microbiological analyses were conducted to evaluate the level of contamination by TB (total bacterial) and SRB (sulfate reducing bacteria) using and q-PCR (quantitative poly chain reaction) technique. Microbial results for SA-10 indicated that total bacteria were 2.21 × 103/mL for mix fluid sample and 1.22 × 105/mL for drilling water sample. In addition, microbial results for total SRB were 1.65 × 102/mL and 1.34 × 102 mL, respectively. Moreover, microbial results for SA-12 indicated 5.89 × 105/mL of total bacteria and 98/mL of SRB in the sample.展开更多
To satisfy the requirement on solid-liquid separation in high-density waste drilling mud, prepare the nano-modified polyacrylamide(PAM) flocculant for high density waste drilling mud by in-situ dispersion method, dire...To satisfy the requirement on solid-liquid separation in high-density waste drilling mud, prepare the nano-modified polyacrylamide(PAM) flocculant for high density waste drilling mud by in-situ dispersion method, direct dispersion method and simultaneous formation method. The result showed the flocculent effect of nano-modified polyacrylamide prepared by simultaneous formation method was the best. When the content of water glass and acrylamide(AM) were respectively 3% and 15% , reaction temperature was 60?C and reaction time was 3h, the performance of product was the best. The water content in filter cake was 24.32% after the waste drilling mud disposed by the optimization flocculant. The flocculent effect of optimization flocculant was superior to that of other flocculant in market.展开更多
A new polyelectrolyte (SPU) has been prepared. It can depress the water-loss of drilling-mud much more effective than the commonly used acrylic polyelectrolytes even in 30% NaCl solution. SPU has phenyl group in the b...A new polyelectrolyte (SPU) has been prepared. It can depress the water-loss of drilling-mud much more effective than the commonly used acrylic polyelectrolytes even in 30% NaCl solution. SPU has phenyl group in the backbone with -SO_3^- in the side chain while the acrylic polyelectrolytes have C—C and -COO^- respectively, there exists an intrinsic relationship between the structure of polymer and its tolerance to salts, it has been found: 1) The adsorption amount of polymer on clay is related closely to the flexibility of polymer chain. 2) The salt-tolerance of -SO_3^- is superior to -COO-. 3) Both SPU-mud and HPAN-mud are plastic fluids. The dependence of yield point on salts relates to the molecular weight of polymer and hydration of ionogenic group, which is quite different for SPU-mud and HPAN-mud. 4 ) The extent of raising zeta-potential of base-mud by SPU is greater than by HPAN, but the extent of dropping zeta-potential of SPU-mud by NaCI is smaller than HPAN-mud. According to these results we suppose the salt-tolerance of SPU-mud is attributed mainly to hydration of -SO_3^- and that of HPAN-mud mainly to network structure formed in the drilling-mud.展开更多
Drilling mud is a key component in drilling operations and in accessing oil and gas reservoirs. Bentonite is applied as a viscosifier, fluid loss control agent, and as a weighting material in water-based drilling mud....Drilling mud is a key component in drilling operations and in accessing oil and gas reservoirs. Bentonite is applied as a viscosifier, fluid loss control agent, and as a weighting material in water-based drilling mud. The type of bentonite used in drilling mud formulation is sodium bentonite due to its high dispersion properties and high swelling capacity. Nigeria has a huge bentonite clay deposit resources which can be evaluated and enhanced in order to be utilized as drilling mud. However, bentonite clay from different parts of Nigeria was investigated and found to be calcium bentonite which is not suitable for drilling mud, because it has low swelling capacity and poor rheological properties. In this study, local bentonite obtained from Afuze, Edo state was used to formulate different samples of drilling mud with each treated using thermo-chemical beneficiation process with sodium carbonate and cassava starch, and then undergo characterization to identify the changes in physical properties and finally, draw comparison with API values for standard drilling mud. The results obtained from this study indicates that, the flow and rheological properties of the beneficiated drilling mud developed through thermo-chemical treatment, showed significant improvement compared to the untreated mud. Therefore, pure calcium bentonite from natural deposits in Nigeria can be modified to sodium bentonite and sufficiently used in drilling mud formulation.展开更多
基金support by the financial support of the National Nature Science Foundation of China(No.52274001,No.52074018)China Petrochemical Corporation(No.p21069)The financial support of Fundamental Research Funds for the Central Universities(buctrc202017)。
文摘The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible.
基金National High Technology Research and Development Program of China(No. 2013AA064301)National Natural Science Foundation of China (No. 51274210)
文摘Treatment of drilling wastewater from a sulfonated drilling mud system in the Shengli Oilfield, East China, was studied. The wastewater was deeply treated by a chemical coagulationcentrifugal separation-ozone catalytic oxidation combined process. The factors (i.e. pH value, chemical dosage, reaction time, etc.) influencing the treatment effect were investigated, and pH = 7 was determined as optimal for the coagulation; polymeric aluminum chloride (PAC) was selected as the optimal coagulant with a dosage of 18 g/L; cationic polyacrylamide (CPAM) with molecular weight of 8 million was selected as the optimal coagulant aid with an optimum dosage of 8 mg/L; and the optimal condition of catalytic ozonation was found to be a pH of 12 and an oxidation time of 40 min. The results showed that the combined treatment process was effective. The oil content and suspended solids content of the effluent reached the first class discharge standard according to China's standard GB 8978-1996 (Integrated Wastewater Discharge Standard) and the chemical oxygen demand (COD) decreased to 195 mg/L from 2.34×10^4 mg/L after coagulation process and ozone oxidation at pH = 12 for 40 min.
基金acknowledge Schulich School of Engineering,The University of Calgary,for their support.
文摘Drilling muds with less environmental impact are highly desired over conventional diesel-based mud systems,especially in light of the emerging strict environmental laws.In this article,a novel oil-in-water(O/W)emulsion drilling fluid formulated with a methyl ester extracted from Indian mango seed oil was evaluated.The effect of the weight percent of different constituents of the emulsion/suspension including the oil phase,bentonite,and polyanionic cellulose polymer on the rheology and the fluid loss was examined.The methyl ester oil phase/mud system displayed superior physical,chemical,rheological and filtration properties relative to the diesel and the mango seed oil.Eco-toxicity of the methyl ester and diesel(O/W)emulsion mud systems was assessed using the acute lethal concentration test.The Indian mango methyl ester(O/W)emulsion mud displayed much less impact on fish population.Flow characteristics collected from the flow model at 85°C suggested excellent shear thinning behavior of the Indian mango methyl ester(IMME)(O/W)emulsion mud.Moreover,the IMME(O/W)emulsion displayed strong pseudoplastic behavior,an attractive feature in a drilling mud,with increasing clay content and polymer concentration.The methyl ester mud was thermally stable over a wide range of the constituent concentrations.Furthermore,a particle size analysis revealed that engineered drilling muds targeting suspension of particles with certain size range can be formulated by changing the volume fraction of the methyl ester in the mud system.
文摘To satisfy the requirement on the separation of solid and liquid in waste drilling mud, prepare a high effective floccu-lant for high density waste drilling mud used starch, 2-Trimethylammonium ethyl methacrylate chloride (DMC) and acrylamide (AM). The result showed that when the ratio of starch, DMC and AM was 2:1:3, the weight of initiator (po-tassium persulfate) was 0.2% of the AM, reaction temperature was 65℃ and reaction time was 5h, the performance of product was the best. The water content in filter cake was 27.6% after the waste drilling mud disposed by the optimization flocculant. The flocculent effect of optimization flocculant was superior to that of other flocculant in market.
基金Supported by the Basic Research Funds Reserved to State-run Universities(18CX02171A,18CX02033A)
文摘Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system was studied, the synthesis methods and functioning mechanism of key additives were introduced, and performance evaluation of the system was performed. The rheology modifier was prepared by reacting a dimer fatty acid with diethanolamine, the primary emulsifier was made by oxidation and addition reaction of fatty acids, the secondary emulsifier was made by amidation of a fatty acid, and finally the fluid loss additive of water-soluble acrylic resin was synthesized by introducing acrylic acid into styrene/butyl acrylate polymerization. The rheology modifier could enhance the attraction between droplets, particles in the emulsion via intermolecular hydrogen bonding and improve the shear stress by forming a three-dimensional network structure in the emulsion. Lab experimental results show that the organoclay-free OBM could tolerate temperatures up to 220 ?C and HTHP filtration is less than 5 m L. Compared with the traditional OBMs, the organoclay-free OBM has low plastic viscosity, high shear stress, high ratio of dynamic shear force to plastic viscosity and high permeability recovery, which are beneficial to penetration rate increase, hole cleaning and reservoir protection.
基金financially supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2008ZX05026-001-12)
文摘The series connection of multistage pumping module is the common concept of deepwater riserless mud recovery drilling system. In this system, the influence of the mass of pumping module on the vibration of mud recovery line cannot be ignored, and the lumped mass method has been utilized to discretize the mud recovery line. Based on the analysis of different boundary conditions, the paper establishes the axial forced vibration model of the mud recovery line considering the seawater damping, and the vibration model analysis provides the universal solution to the vibration model. An example of the two-stage pumping system has been used to analyze the dynamic response of mud recovery line under different excited frequencies. This paper has the important directive significance for the application of riserless mud recovery drilling technology in deepwater surface drilling.
基金Supported by the China National Science and Technology Major Project(2016ZX05020-003).
文摘It is difficult to define safe drilling mud density window for shale sections.To solve this problem,the general Biot effective stress principle developed by Heidug and Wong was modified.The Weibull statistical model was used to characterize the hydration strainrelated strength damage.Considering drilling fluid sealing barrier on shale,a calculation method of safe drilling mud density has been established for shale formation under drilling fluid sealing-inhibition-reverse osmosis effect,combined with a flow-diffusion coupling model.The influence of drilling fluid sealing and inhibiting parameters on safe drilling mud density window was analyzed.The study shows that enhancing drilling fluid sealing performance can reduce the pore pressure transmission and solute diffusion;the inhibiting performance of drilling fluid,especially inhibition to strength damage,is crucial for the wellbore collapse pressure of shale section with significant hydration property.The improvement of drilling fluid sealing and inhibition performance can lower collapse pressure and enhance fracturing pressure,and thus making the safe drilling fluid density window wider and the collapse period of wellbore longer.If there is osmosis flow in shale,induced osmosis flow can make the gap between collapse pressure and fracturing pressure wider,and the stronger the sealing ability of drilling fluid,the wider the gap will be.The safe drilling mud density window calculation method can analyze the relationships between collapse pressure,fracturing pressure and drilling fluid anti collapse performance,and can be used to optimize drilling fluid performance.
文摘Drilling fluids and mud additives are generally acknowledged as potential sources of contamination in deep drilling programs, as they may contain high concentration of nutrients for subsurface microorganisms. Microorganisms introduced into drilling process cause a number of problems that can lead to significant costs for the industry. Numerous studies have shown that biogenic sulfide production in oil and natural gas fields have led to a number of problems, including reservoir plugging, reservoir souring, reduced product quality, and corrosion of metal-containing equipment. The aim of this study is to determine the microbial contamination of water drilling mud and cement Mix fluid at two Saudi Aramco well SA-10 & SA-12 and to adequately perform microbial assessment for the well both wells. Microbiological analyses were conducted to evaluate the level of contamination by TB (total bacterial) and SRB (sulfate reducing bacteria) using and q-PCR (quantitative poly chain reaction) technique. Microbial results for SA-10 indicated that total bacteria were 2.21 × 103/mL for mix fluid sample and 1.22 × 105/mL for drilling water sample. In addition, microbial results for total SRB were 1.65 × 102/mL and 1.34 × 102 mL, respectively. Moreover, microbial results for SA-12 indicated 5.89 × 105/mL of total bacteria and 98/mL of SRB in the sample.
文摘To satisfy the requirement on solid-liquid separation in high-density waste drilling mud, prepare the nano-modified polyacrylamide(PAM) flocculant for high density waste drilling mud by in-situ dispersion method, direct dispersion method and simultaneous formation method. The result showed the flocculent effect of nano-modified polyacrylamide prepared by simultaneous formation method was the best. When the content of water glass and acrylamide(AM) were respectively 3% and 15% , reaction temperature was 60?C and reaction time was 3h, the performance of product was the best. The water content in filter cake was 24.32% after the waste drilling mud disposed by the optimization flocculant. The flocculent effect of optimization flocculant was superior to that of other flocculant in market.
基金The project is supported by National Natural Science Foundation of China
文摘A new polyelectrolyte (SPU) has been prepared. It can depress the water-loss of drilling-mud much more effective than the commonly used acrylic polyelectrolytes even in 30% NaCl solution. SPU has phenyl group in the backbone with -SO_3^- in the side chain while the acrylic polyelectrolytes have C—C and -COO^- respectively, there exists an intrinsic relationship between the structure of polymer and its tolerance to salts, it has been found: 1) The adsorption amount of polymer on clay is related closely to the flexibility of polymer chain. 2) The salt-tolerance of -SO_3^- is superior to -COO-. 3) Both SPU-mud and HPAN-mud are plastic fluids. The dependence of yield point on salts relates to the molecular weight of polymer and hydration of ionogenic group, which is quite different for SPU-mud and HPAN-mud. 4 ) The extent of raising zeta-potential of base-mud by SPU is greater than by HPAN, but the extent of dropping zeta-potential of SPU-mud by NaCI is smaller than HPAN-mud. According to these results we suppose the salt-tolerance of SPU-mud is attributed mainly to hydration of -SO_3^- and that of HPAN-mud mainly to network structure formed in the drilling-mud.
文摘Drilling mud is a key component in drilling operations and in accessing oil and gas reservoirs. Bentonite is applied as a viscosifier, fluid loss control agent, and as a weighting material in water-based drilling mud. The type of bentonite used in drilling mud formulation is sodium bentonite due to its high dispersion properties and high swelling capacity. Nigeria has a huge bentonite clay deposit resources which can be evaluated and enhanced in order to be utilized as drilling mud. However, bentonite clay from different parts of Nigeria was investigated and found to be calcium bentonite which is not suitable for drilling mud, because it has low swelling capacity and poor rheological properties. In this study, local bentonite obtained from Afuze, Edo state was used to formulate different samples of drilling mud with each treated using thermo-chemical beneficiation process with sodium carbonate and cassava starch, and then undergo characterization to identify the changes in physical properties and finally, draw comparison with API values for standard drilling mud. The results obtained from this study indicates that, the flow and rheological properties of the beneficiated drilling mud developed through thermo-chemical treatment, showed significant improvement compared to the untreated mud. Therefore, pure calcium bentonite from natural deposits in Nigeria can be modified to sodium bentonite and sufficiently used in drilling mud formulation.