期刊文献+
共找到13,266篇文章
< 1 2 250 >
每页显示 20 50 100
Review of Field Weakening Control Strategies of Permanent Magnet Synchronous Motors
1
作者 Runze Jing Gaolin Wang +1 位作者 Guoqiang Zhang Dianguo Xu 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期319-331,共13页
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s... Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control. 展开更多
关键词 Calculation-based methods Field weakening control Model predictive control Permanent magnet synchronous motor OVERMODULATION Voltage closed-loop control
下载PDF
An Adaptive Control Strategy for Energy Storage Interface Converter Based on Analogous Virtual Synchronous Generator
2
作者 Feng Zhao Jinshuo Zhang +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2024年第2期339-358,共20页
In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To ... In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance. 展开更多
关键词 Adaptive control analogous virtual synchronous generator DC/DC converter inertia of DC microgrid DC microgrid with PV and BES BATTERY DC bus voltage
下载PDF
Disturbances rejection optimization based on improved two-degree-of-freedom LADRC for permanent magnet synchronous motor systems
3
作者 Chenggang Wang Jianhu Yan +2 位作者 Wenlong Li Liang Shan Le Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期518-531,共14页
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba... Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system. 展开更多
关键词 Permanent magnet synchronous motor(PMSM) Active disturbance rejection control(ADRC) Disturbance observer Two-degree-of-freedom control ANTI-DISTURBANCE
下载PDF
Cascaded Model Predictive Control of Six-phase Permanent Magnet Synchronous Motor with Fault Tolerant Ability 被引量:1
4
作者 Ling Feng Zhaohui Wang +1 位作者 Jianghua Feng Wensheng Song 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期311-319,共9页
In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much ... In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault. 展开更多
关键词 Fault-tolerant control Model predictive control Permanent magnet synchronous motor Six-phase motor Weighting factor
下载PDF
Adaptive Gain Tuning Rule for Nonlinear Sliding-mode Speed Control of Encoderless Three-phase Permanent Magnet Assisted Synchronous Motor 被引量:1
5
作者 Ghada A.Abdel Aziz Rehan Ali Khan 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期301-310,共10页
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r... In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions. 展开更多
关键词 Permanent magnet assisted synchronous reluctance motor Nonlinear sliding mode speed control Speed estimation Parameter uncertainties Sliding mode estimator
下载PDF
Integrated Sliding Mode Velocity Control of Linear Permanent Magnet Synchronous Motor with Thrust Ripple Compensation
6
作者 Cong Bai Zhonggang Yin +2 位作者 Jing Liu Yanqing Zhang Xiangdong Sun 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第1期100-109,共10页
In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear perma... In this paper,a compound sliding mode velocity control scheme with a new exponential reaching law(NERL)with thrust ripple observation strategy is proposed to obtain a high performance velocity loop of the linear permanent magnet synchronous motor(LPMSM)control system.A sliding mode velocity controller based on NERL is firstly discussed to restrain chattering of the conventional exponential reaching law(CERL).Furthermore,the unavoidable thrust ripple caused by the special structure of linear motor will bring about velocity fluctuation and reduced control performance.Thus,a thrust ripple compensation strategy on the basis of extend Kalman filter(EKF)theory is proposed.The estimated thrust ripple will be introduced into the sliding mode velocity controller to optimize the control accuracy and robustness.The effectiveness of the proposal is validated with experimental results. 展开更多
关键词 Linear permanent magnet synchronous motor(LPMSM) Sliding mode velocity control New exponential reaching law Thrust ripple compensation
下载PDF
Synchronous Control of Complex Networks with Fuzzy Connections
7
作者 Wei Chen Yuanguang Zheng 《Open Journal of Applied Sciences》 2023年第12期2273-2281,共9页
This article is based on the T-S fuzzy control theory and investigates the synchronization control problem of complex networks with fuzzy connections. Firstly, the main stability equation of a complex network system i... This article is based on the T-S fuzzy control theory and investigates the synchronization control problem of complex networks with fuzzy connections. Firstly, the main stability equation of a complex network system is obtained, which can determine the stability of the synchronous manifold. Secondly, the main stable system is fuzzified, and based on fuzzy control theory, the control design of the fuzzified main stable system is carried out to obtain a coupling matrix that enables the complex network to achieve complete synchronization. The numerical analysis results indicate that the control method proposed in this paper can effectively achieve synchronization control of complex networks, while also controlling the transition time for the network to achieve synchronization. 展开更多
关键词 T-S Fuzzy control synchronIZATION Complex Network
下载PDF
A master-slave generalized predictive synchronization control for preheating process of multi-cavity hot runner system 被引量:1
8
作者 Hongyi Qu Shengyong Mo +3 位作者 Ke Yao Zhao-Xia Huang Zhihao Xu Furong Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期270-280,共11页
As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the... As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective. 展开更多
关键词 Process control Thermodynamics process Model-predictive control Multi-cavity hot runner system Master-Slave synchronization Mr.Slowest
下载PDF
Speed Regulation Method Using Genetic Algorithm for Dual Three-phase Permanent Magnet Synchronous Motors 被引量:1
9
作者 Xiuhong Jiang Yuying Wang Jiarui Dong 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第2期171-178,共8页
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the... Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller. 展开更多
关键词 Dual three-phase permanent magnet synchronous motor Genetic algorithm PI control Speed regulation
下载PDF
Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory 被引量:15
10
作者 韦笃取 张波 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1399-1403,共5页
This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear... This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation. 展开更多
关键词 chaos control finite-time stability theory permanent magnet synchronous motor
下载PDF
Fractional-order permanent magnet synchronous motor and its adaptive chaotic control 被引量:9
11
作者 李春来 禹思敏 罗晓曙 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期168-173,共6页
In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an a... In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system. 展开更多
关键词 FRACTIONAL-ORDER permanent magnet synchronous motor adaptive chaotic control
下载PDF
Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer 被引量:9
12
作者 陈强 南余荣 +1 位作者 郑恒火 任雪梅 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期157-162,共6页
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ... A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method. 展开更多
关键词 permanent magnet synchronous motor chaotic system sliding mode control fuzzy extended stateobserver
下载PDF
Nonlinear Adaptive Slewing Motion Control of Spacecraft Truss Driven by Synchronous V-gimbaled CMG Precession 被引量:4
13
作者 Zhou Di Zhou Jingyang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期332-338,共7页
The slewing motion control of a truss arm driven by a V-gimbaled control-moment-gyro (CMG) is a nonlinear control problem. The V-gimbaled CMG consists of a pair of gyros that must precess synchronously. The moment o... The slewing motion control of a truss arm driven by a V-gimbaled control-moment-gyro (CMG) is a nonlinear control problem. The V-gimbaled CMG consists of a pair of gyros that must precess synchronously. The moment of inertia of the system, the angular momentum of the gyros and the external disturbances are not exactly known. With the help of feedback linearization and recursive Lyaptmov design method, an adaptive nonlinear controller is designed to deal with the unknown items. Performance of the proposed controller is verified by simulation. 展开更多
关键词 adaptive control attitude control feedback linearization CMG synchronization
下载PDF
Passive adaptive control of chaos in synchronous reluctance motor 被引量:4
14
作者 韦笃取 罗晓曙 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第1期92-97,共6页
The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in t... The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in this paper, which transforms the chaotic SynRM into an equivalent passive system. It is proved that the equivalent system can be asymptotically stabilized at the set equilibrium point, namely, chaos in SynRM can be controlled. Moreover, in order to eliminate the influence of undeterministic parameters, an adaptive law is introduced into the designed controller. Computer simulation results show that the proposed controller is very effective and robust against the uncertainties in systemic parameters. The present study may help to maintain the secure operation of industrial servo drive system. 展开更多
关键词 chaos control passive control adaptive control synchronous reluctance motor
下载PDF
Impulsive control of permanent magnet synchronous motors with parameters uncertainties 被引量:6
15
作者 李东 王时龙 +2 位作者 张小洪 杨丹 王慧 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1678-1684,共7页
The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven... The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results. 展开更多
关键词 permanent magnet synchronous motors impulsive control parameters uncertainties robust stability
下载PDF
Application of neural networks for permanent magnet synchronous motor direct torque control 被引量:6
16
作者 Zhang Chunmei Liu Heping +1 位作者 Chen Shujin Wang Fangjun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期555-561,共7页
Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training a... Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response. 展开更多
关键词 interior permanent magnet synchronous motor radial basis function neural network torque control direct torque control.
下载PDF
Synchronous tracking control of 6-DOF hydraulic parallel manipulator using cascade control method 被引量:7
17
作者 皮阳军 王宣银 顾曦 《Journal of Central South University》 SCIE EI CAS 2011年第5期1554-1562,共9页
The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this p... The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator. 展开更多
关键词 synchronization error CROSS-COUPLING cascade control hydraulic dynamics parallel manipulator degree of freedom
下载PDF
Adaptive H-infinity control of synchronous generators with steam valve via Hamiltonian function method 被引量:2
18
作者 Shujuan LI Yuzhen WANG 《控制理论与应用(英文版)》 EI 2006年第2期105-110,共6页
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha... Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective. 展开更多
关键词 synchronous generator Excitation control Steam valve control Hamiltonian function method Adaptive H-infinity controller.
下载PDF
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
19
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 Maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
下载PDF
Finite-Control-Set Model Predictive Control of Permanent Magnet Synchronous Motor Drive Systems——An Overview 被引量:5
20
作者 Teng Li Xiaodong Sun +3 位作者 Gang Lei Zebin Yang Youguang Guo Jianguo Zhu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2087-2105,共19页
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p... Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted. 展开更多
关键词 Computational burden finite control set(FCS) model predictive control(MPC) permanent magnet synchronous motor(PMSM) robust operation switching frequency
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部