Ice krill is the keystone species in the neritic ecosystem in the Southern Ocean, where it replaces the more oceanic Antarctic krill. It is essential to understand the variation of target strength (TS in dB re l m^2...Ice krill is the keystone species in the neritic ecosystem in the Southern Ocean, where it replaces the more oceanic Antarctic krill. It is essential to understand the variation of target strength (TS in dB re l m^2) with the different body size to accurately estimate ice krill stocks. However, there is comparatively little knowledge of the acoustic backscatter of ice krill. The TS of individual, formalin-preserved, tethered ice krill was measured in a freshwater test tank at 38, 120, and 200 kHz with a calibrated split-beam echo sounder system. Mean TS was obtained from 21 individual ice krill with a broad range of body lengths (L: 13-36 iron). The length (L, mm) to wet weight (W; mg) relationship for ice krill was 11/=0.001 21g^103~L35s (R2=0.96). The mean TS-to-length relationship were TS38kHz=-177.4+57log10(L), (R^2=0.86); TS120kHz= -129.9+31.561ogf0(L), (R2=0.87); and TS200kHz=-117.6+24.661ogre(L), (R2=0.84). Empirical estimates of the relationship between the TS and body length of ice krill were established at 38, 120, and 200 kHz and compared with predictions obtained from both the linear regression model of Greene et al. (1991) and the Stochastic Distorted Wave Born Approximation (SDWBA) model. This result might be applied to improve acoustic detection and density estimation of ice krill in the Southern Ocean. Further comparative studies are needed with in situ target strength including various body lengths of ice krill.展开更多
The in situ calibration of Scientific Echo Sounders(SESs)in the Southern Ocean is crucial for accurate assessments of Antarctic krill and fishery biomasses.Because of the occurrence of strong winds,waves,and sea ice c...The in situ calibration of Scientific Echo Sounders(SESs)in the Southern Ocean is crucial for accurate assessments of Antarctic krill and fishery biomasses.Because of the occurrence of strong winds,waves,and sea ice coverage in most seasons,SES calibration is usually difficult to perform in the Southern Ocean.Accordingly,it is essential to identify potential sites suitable for SES calibration in the marginal seas around Antarctica to successfully calibrate SESs in the Southern Ocean.Using synthetic analyses of the wind,surface current,and sea ice concentration in the targeted seas,we found that the polynya in the southeast Prydz Bay,close to the Chinese Zhongshan Station,is an ideal location to calibrate SESs based on its weak wind and surface current and its ice-free coverage during Antarctic cruises.Calibrations of the SESs onboard the research vessels of Xuelong and Xuelong 2 during the 36th and 37th Chinese National Antarctic Research Expeditions indicate that this location is a potential suitable site for conducting SES calibration with the vessel in a drifting mode.展开更多
To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especia...To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa- rameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.展开更多
<div style="text-align:justify;"> This study focuses on change of topography in a water area. Output data from a GPS unit and an echo sounder data were incorporated into analysis for construction of un...<div style="text-align:justify;"> This study focuses on change of topography in a water area. Output data from a GPS unit and an echo sounder data were incorporated into analysis for construction of underwater topography. Comparison of two data sets lead to conclusion concerning sedimentation during period from January 2020 to January 2021. </div>展开更多
High-resolution approaches such as multiple signal classification and estimation of signal parameters via rotational invariance techniques(ESPRIT) are currently employed widely in multibeam echo-sounder(MBES)syste...High-resolution approaches such as multiple signal classification and estimation of signal parameters via rotational invariance techniques(ESPRIT) are currently employed widely in multibeam echo-sounder(MBES)systems for sea floor bathymetry,where a uniform line array is also required.However,due to the requirements in terms of the system coverage/resolution and installation space constraints,an MBES system usually employs a receiving array with a special shape,which means that high-resolution algorithms cannot be applied directly.In addition,the short-term stationary echo signals make it difficult to estimate the covariance matrix required by the high-resolution approaches,which further increases the complexity when applying the high-resolution algorithms in the MBES systems.The ESPRIT with multiple-angle subarray beamforming is employed to reduce the requirements in terms of the signal-to-noise ratio,number of snapshots,and computational effort.The simulations show that the new processing method can provide better fine-structure resolution.Then a highresolution bottom detection(HRBD) algorithm is developed by combining the new processing method with virtual array transformation.The application of the HRBD algorithm to a U-shaped array is also discuss.The computer simulations and experimental data processing results verify the effectiveness of the proposed algorithm.展开更多
在多波束测深系统的换能器安装与使用过程中,由于无法保证换能器坐标系统与船体坐标系统完全重合,因此必须进行横摇、纵倾以及航向偏差校准与改正,使两者坐标系统相一致。详细分析了多波束测深系统换能器安装校准的原理和方法,以"...在多波束测深系统的换能器安装与使用过程中,由于无法保证换能器坐标系统与船体坐标系统完全重合,因此必须进行横摇、纵倾以及航向偏差校准与改正,使两者坐标系统相一致。详细分析了多波束测深系统换能器安装校准的原理和方法,以"亚美通道"海底光缆路由调查中,挪威Simrad EM 3000多波束测深系统的安装与校准为例,阐述了其安装校准方法及在海底地形测量中的应用。展开更多
基金Supported by the Korea Polar Research Institute(No.PP14020)the Korea Institute of Ocean Science and Technology(No.PN65250)
文摘Ice krill is the keystone species in the neritic ecosystem in the Southern Ocean, where it replaces the more oceanic Antarctic krill. It is essential to understand the variation of target strength (TS in dB re l m^2) with the different body size to accurately estimate ice krill stocks. However, there is comparatively little knowledge of the acoustic backscatter of ice krill. The TS of individual, formalin-preserved, tethered ice krill was measured in a freshwater test tank at 38, 120, and 200 kHz with a calibrated split-beam echo sounder system. Mean TS was obtained from 21 individual ice krill with a broad range of body lengths (L: 13-36 iron). The length (L, mm) to wet weight (W; mg) relationship for ice krill was 11/=0.001 21g^103~L35s (R2=0.96). The mean TS-to-length relationship were TS38kHz=-177.4+57log10(L), (R^2=0.86); TS120kHz= -129.9+31.561ogf0(L), (R2=0.87); and TS200kHz=-117.6+24.661ogre(L), (R2=0.84). Empirical estimates of the relationship between the TS and body length of ice krill were established at 38, 120, and 200 kHz and compared with predictions obtained from both the linear regression model of Greene et al. (1991) and the Stochastic Distorted Wave Born Approximation (SDWBA) model. This result might be applied to improve acoustic detection and density estimation of ice krill in the Southern Ocean. Further comparative studies are needed with in situ target strength including various body lengths of ice krill.
基金This study was financially supported by National Polar Special Program“Impact and Response of Antarctic Seas to Climate Change”(Grant nos.IRASCC IRASCC 01-01,01-02,02-01)was supported by the National Key R&D Program of China(Grant nos.2017YFC0306003 and 2016YFB0501703)the National Natural Science Foundation of China(Grant nos.41876111,41706115,and 41806214).
文摘The in situ calibration of Scientific Echo Sounders(SESs)in the Southern Ocean is crucial for accurate assessments of Antarctic krill and fishery biomasses.Because of the occurrence of strong winds,waves,and sea ice coverage in most seasons,SES calibration is usually difficult to perform in the Southern Ocean.Accordingly,it is essential to identify potential sites suitable for SES calibration in the marginal seas around Antarctica to successfully calibrate SESs in the Southern Ocean.Using synthetic analyses of the wind,surface current,and sea ice concentration in the targeted seas,we found that the polynya in the southeast Prydz Bay,close to the Chinese Zhongshan Station,is an ideal location to calibrate SESs based on its weak wind and surface current and its ice-free coverage during Antarctic cruises.Calibrations of the SESs onboard the research vessels of Xuelong and Xuelong 2 during the 36th and 37th Chinese National Antarctic Research Expeditions indicate that this location is a potential suitable site for conducting SES calibration with the vessel in a drifting mode.
基金funded by the National High Technology Research and Development Program of China('863'Program)under contract Nos.2004AA616080 and 2006AA09ZI03the National Natural Science Foundation of China(Project code:40606026).
文摘To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure- ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa- rameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.
文摘<div style="text-align:justify;"> This study focuses on change of topography in a water area. Output data from a GPS unit and an echo sounder data were incorporated into analysis for construction of underwater topography. Comparison of two data sets lead to conclusion concerning sedimentation during period from January 2020 to January 2021. </div>
基金The National Natural Science Foundation of China under contract No.41706066the National Key R&D Program of China under contract No.2016YFC1400200the China-ASEAN Maritime Cooperation Fund
文摘High-resolution approaches such as multiple signal classification and estimation of signal parameters via rotational invariance techniques(ESPRIT) are currently employed widely in multibeam echo-sounder(MBES)systems for sea floor bathymetry,where a uniform line array is also required.However,due to the requirements in terms of the system coverage/resolution and installation space constraints,an MBES system usually employs a receiving array with a special shape,which means that high-resolution algorithms cannot be applied directly.In addition,the short-term stationary echo signals make it difficult to estimate the covariance matrix required by the high-resolution approaches,which further increases the complexity when applying the high-resolution algorithms in the MBES systems.The ESPRIT with multiple-angle subarray beamforming is employed to reduce the requirements in terms of the signal-to-noise ratio,number of snapshots,and computational effort.The simulations show that the new processing method can provide better fine-structure resolution.Then a highresolution bottom detection(HRBD) algorithm is developed by combining the new processing method with virtual array transformation.The application of the HRBD algorithm to a U-shaped array is also discuss.The computer simulations and experimental data processing results verify the effectiveness of the proposed algorithm.
文摘在多波束测深系统的换能器安装与使用过程中,由于无法保证换能器坐标系统与船体坐标系统完全重合,因此必须进行横摇、纵倾以及航向偏差校准与改正,使两者坐标系统相一致。详细分析了多波束测深系统换能器安装校准的原理和方法,以"亚美通道"海底光缆路由调查中,挪威Simrad EM 3000多波束测深系统的安装与校准为例,阐述了其安装校准方法及在海底地形测量中的应用。