With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-...With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-making process less complex and simpler for problem-solving. In order to make a high-quality business decision, managers need to have a great deal of appropriate information. Nonetheless, this complicates the process of making appropriate decisions. In a situation like that, the possibility of using DSS is quite logical. The aim of this paper is to find out the intended use of DSS for medium and large business organizations in USA by applying the Technology Acceptance Model (TAM). Different models were developed in order to understand and predict the use of information systems, but the information systems community mostly used TAM to ensure this issue. The purpose of the research model is to determine the elements of analysis that contribute to these results. The sample for the research consisted of the target group that was supposed to have completed an online questionnaire about the manager’s use of DSS in medium and large American companies. The information obtained from the questionnaires was analyzed through the SPSS statistical software. The research has indicated that, this is primarily used due to a significant level of Perceived usefulness and For the Perceived ease of use.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreami...In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreaming.Especially during the COVID-19 pandemic,due to the lockdown,live-streaming has become an important means of economic development in many places.Owing to its remarkable characteristics of timeliness,entertainment,and interactivity,it has become the latest and trendiest sales mode of e-commerce channels,reflecting huge economic potential and commercial value.This article analyzes two models and their characteristics of live-streaming sales from a practical perspective.Based on this,it outlines consumer purchasing decisions and the factors that affect consumer purchasing decisions under the live-streaming sales model.Finally,it discusses targeted suggestions for using the live-streaming sales model to expand the consumer market,hoping to promote the healthy and steady development of the live-streaming sales industry.展开更多
Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about pos...Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.展开更多
With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dan...With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on m...Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method.展开更多
In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue reso...In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.展开更多
In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanne...In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanned system coordinative region control operation as an example,this paper combines knowledge representation with probabilistic decisionmaking and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences.Firstly,according to utility value decision theory,the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned.Then,multi-entity Bayesian network is introduced for situation assessment,by which scenes and their uncertainty related to the operation are semantically described,so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty.Finally,the effectiveness of the proposed method is verified in a virtual task scenario.This research has important reference value for realizing scene cognition,improving cooperative decision-making ability under dynamic scenes,and achieving swarm level autonomy of unmanned systems.展开更多
A significant portion of emerging adults do not achieve recommended levels of physical activity (PA). Previous studies observedassociations between features of emerging adulthood and PA levels, while the potential psy...A significant portion of emerging adults do not achieve recommended levels of physical activity (PA). Previous studies observedassociations between features of emerging adulthood and PA levels, while the potential psychological mechanisms that mightexplain this phenomenon are not fully understood. In this context, there is some evidence that situated decisions towardphysical activity (SDPA) and exercise-intensity tolerance might influence PA level. To provide empirical support for thisassumption, the current study investigated whether (i) features of emerging adulthood are linked to SDPA, which, in turn,might affect PA engagement;(ii) exercise-intensity tolerance moderate the relationship between SDPA and PA level;and (iii)SDPA is a mediator of the relationship between features of emerging adulthood and PA levels under the prerequisite thatexercise-intensity tolerance moderates the link between SDPA and PA engagement. In this study a group of 1,706 Chinesecollege students was recruited and asked to complete a set of questionnaires assessing their SDPA, PA levels, exercise-intensitytolerance, and features associated with emerging adulthood, namely Self-exploration, Instability, and Possibility. Our resultsindicated that SDPA positively predicted PA levels and this relationship became stronger when exercise-intensity tolerance wasused as a moderator. Furthermore, it was observed that individuals with a higher level of Instability and a lower level ofPossibility during emerging adulthood exhibited a lower level of SDPA. Taken together, the results of our study providefurther insights on a potential psychological mechanism linking features of emerging adulthood and physical activity.展开更多
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de...This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.展开更多
By applying the system analysis principle and mathematical modeling technique to knowledge expression system for crop cultural management, the fundamental relationships and quantitative algorithms of wheat growth and ...By applying the system analysis principle and mathematical modeling technique to knowledge expression system for crop cultural management, the fundamental relationships and quantitative algorithms of wheat growth and management indices to variety types, ecological environments and production levels were analysed and extracted, and a dynamic knowledge model with temporal and spatial characters for wheat management(WheatKnow)was developed. By adopting the soft component characteristics as non language relevance , re-utilization and portable system maintenance. and by further integrating the wheat growth simulation model(WheatGrow)and intelligent system for wheat management, a comprehensive and digital knowledge model, growth model and component-based decision support system for wheat management(MBDSSWM)was established on the platforms of Visual C++ and Visual Basic. The MBDSSWM realized the effective integration and coupling of the prediction and decision-making functions for digital crop management.展开更多
As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modell...As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modelling might allow us to gather evidence from previous studies as well as compare the costs and consequences of alternative options. For public health policy and clinical intervention assessment, it is a potentially powerful tool. The most commonly used types of decision analytical models include decision trees, the Markov model, microsimulation, discrete event simulation and the system dynamic model. Analytic models could support decision makers in the field of liver transplantation when facing specifc problems by synthesizing evidence, comprising all relevant options, generalizing results to other contexts, extending the time horizon and exploring the uncertainty. For modeling studies of economic evaluation for transplantation, understanding the current nature of the disease is crucial, as well as the selection of appropriate modelling techniques. The quality and availability of data is another key element for the selection and development of decision analytical models. In addition, good practice guidelines should be complied, which is important for standardization and comparability between economic outputs.展开更多
An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri n...An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri nets (CPNs). A structural and behavioral analysis method is adopted to obtain the static and dynamic property used to verify the CPNs model of the cognitive framework. Finally, an example from the command and control radar recognition system is used to evaluate the feasibility and availability of the CPNs model adopted in practical systems.展开更多
A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans accord...A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.展开更多
The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet...The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet of Things(IoT),cloud computing,and big data,to transformthe conventional medical system in an all-around way,making healthcare highly effective,more personalized,and more convenient.This work designs a new Heap Based Optimization with Deep Quantum Neural Network(HBO-DQNN)model for decision-making in smart healthcare applications.The presented HBO-DQNN modelmajorly focuses on identifying and classifying healthcare data.In the presented HBO-DQNN model,three stages of operations were performed.Data normalization is applied to pre-process the input data at the initial stage.Next,the HBO algorithm is used in the second stage to choose an optimal set of features from the healthcare data.At last,the DQNN model is exploited for healthcare data classification.A series of experiments were carried out to portray the promising classifier results of the HBO-DQNN model.The extensive comparative study reported the improvements of the HBO-DQNN method over other existing models with maximum accuracy of 97.05%and 95.72%under the colon cancer and lymphoma dataset.展开更多
Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementati...Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementation of a decision support system(DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use management. Discharge and glacier geometry changes were simulated with hydrological model, water availability in semiarid environments. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were taken as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs as the models running parallel in the simulation periods. The DSS integrates the hydrological data, geographic data, social and economic statistical data, and establishes the relationships with equations, conditional statements and fuzzy logics. The programming is realized in C++. The DSS has four remarkable features:(1) editable land use maps to assist decision-making;(2) conjunctive use of surface and groundwater resources;(3) interactions among water, earth, ecosystem, and humans; and(4) links with hydrological models. The overall goal of the DSS is to combine the outputs of scientific models, knowledge of experts, and perspectives of stakeholders, into a computer-based system, which allows sustainability impact assessment within regional planning; and to understand ecosystem services and integrate them into land and water management.展开更多
This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from tra...This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area.展开更多
According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and genera...According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and generalization for the enemy,the confrontation process is modeled as a zero-sum stochastic game(ZSG).By introducing the theory of dynamic relative power potential field,the problem of reward sparsity in the model can be solved.By reward shaping,the problem of credit assignment between agents can be solved.Based on the idea of meta-learning,an extensible multi-agent deep reinforcement learning(EMADRL)framework and solving method is proposed to improve the effectiveness and efficiency of model solving.Experiments show that the model meets the requirements well and the algorithm learning efficiency is high.展开更多
文摘With the beginning of the information systems’ spreading, people started thinking about using them for making business decisions. Computer technology solutions, such as the Decision Support System, make the decision-making process less complex and simpler for problem-solving. In order to make a high-quality business decision, managers need to have a great deal of appropriate information. Nonetheless, this complicates the process of making appropriate decisions. In a situation like that, the possibility of using DSS is quite logical. The aim of this paper is to find out the intended use of DSS for medium and large business organizations in USA by applying the Technology Acceptance Model (TAM). Different models were developed in order to understand and predict the use of information systems, but the information systems community mostly used TAM to ensure this issue. The purpose of the research model is to determine the elements of analysis that contribute to these results. The sample for the research consisted of the target group that was supposed to have completed an online questionnaire about the manager’s use of DSS in medium and large American companies. The information obtained from the questionnaires was analyzed through the SPSS statistical software. The research has indicated that, this is primarily used due to a significant level of Perceived usefulness and For the Perceived ease of use.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreaming.Especially during the COVID-19 pandemic,due to the lockdown,live-streaming has become an important means of economic development in many places.Owing to its remarkable characteristics of timeliness,entertainment,and interactivity,it has become the latest and trendiest sales mode of e-commerce channels,reflecting huge economic potential and commercial value.This article analyzes two models and their characteristics of live-streaming sales from a practical perspective.Based on this,it outlines consumer purchasing decisions and the factors that affect consumer purchasing decisions under the live-streaming sales model.Finally,it discusses targeted suggestions for using the live-streaming sales model to expand the consumer market,hoping to promote the healthy and steady development of the live-streaming sales industry.
文摘Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.
基金supported by the National Key R&D Program of China(2019YFC1510700)the Sichuan Science and Technology Program(2023YFS0380, 2023YFS0377, 2019YFG0460, 2022YFS0539)。
文摘With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional(3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
文摘Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method.
基金The National Natural Science Foundation of China (No.50422283)the Science and Technology Key Plan Project of Henan Province (No.072102360060)
文摘In order to solve the problems of potential incident rescue on expressway networks, the opportunity cost-based method is used to establish a resource dispatch decision model. The model aims to dispatch the rescue resources from the regional road networks and to obtain the location of the rescue depots and the numbers of service vehicles assigned for the potential incidents. Due to the computational complexity of the decision model, a scene decomposition algorithm is proposed. The algorithm decomposes the dispatch problem from various kinds of resources to a single resource, and determines the original scene of rescue resources based on the rescue requirements and the resource matrix. Finally, a convenient optimal dispatch scheme is obtained by decomposing each original scene and simplifying the objective function. To illustrate the application of the decision model and the algorithm, a case of the expressway network is studied on areas around Nanjing city in China and the results show that the model used and the algorithm proposed are appropriate.
基金the Military Science Postgraduate Project of PLA(JY2020B006).
文摘In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanned system coordinative region control operation as an example,this paper combines knowledge representation with probabilistic decisionmaking and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences.Firstly,according to utility value decision theory,the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned.Then,multi-entity Bayesian network is introduced for situation assessment,by which scenes and their uncertainty related to the operation are semantically described,so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty.Finally,the effectiveness of the proposed method is verified in a virtual task scenario.This research has important reference value for realizing scene cognition,improving cooperative decision-making ability under dynamic scenes,and achieving swarm level autonomy of unmanned systems.
基金supported by the University Malaya Community Campus Grant-RUU2022-LL016Private Grant PV086-2022(University Poly-Tech MARA-UPTM),Kuala LumpurUniversitas Negeri Malang,Indonesia.
文摘A significant portion of emerging adults do not achieve recommended levels of physical activity (PA). Previous studies observedassociations between features of emerging adulthood and PA levels, while the potential psychological mechanisms that mightexplain this phenomenon are not fully understood. In this context, there is some evidence that situated decisions towardphysical activity (SDPA) and exercise-intensity tolerance might influence PA level. To provide empirical support for thisassumption, the current study investigated whether (i) features of emerging adulthood are linked to SDPA, which, in turn,might affect PA engagement;(ii) exercise-intensity tolerance moderate the relationship between SDPA and PA level;and (iii)SDPA is a mediator of the relationship between features of emerging adulthood and PA levels under the prerequisite thatexercise-intensity tolerance moderates the link between SDPA and PA engagement. In this study a group of 1,706 Chinesecollege students was recruited and asked to complete a set of questionnaires assessing their SDPA, PA levels, exercise-intensitytolerance, and features associated with emerging adulthood, namely Self-exploration, Instability, and Possibility. Our resultsindicated that SDPA positively predicted PA levels and this relationship became stronger when exercise-intensity tolerance wasused as a moderator. Furthermore, it was observed that individuals with a higher level of Instability and a lower level ofPossibility during emerging adulthood exhibited a lower level of SDPA. Taken together, the results of our study providefurther insights on a potential psychological mechanism linking features of emerging adulthood and physical activity.
基金This work was supported in part by the National Natural Science Foundation of China(61601418,41602362,61871259)in part by the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring(2020-5)+1 种基金in part by the Qilian Mountain National Park Research Center(Qinghai)(grant number:GKQ2019-01)in part by the Geomatics Technology and Application Key Laboratory of Qinghai Province,Grant No.QHDX-2019-01.
文摘This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.
基金supported by the National Natural Science Foundation of China(30030090)the National 863 Program,China(2001AA115420,2001AA245041).
文摘By applying the system analysis principle and mathematical modeling technique to knowledge expression system for crop cultural management, the fundamental relationships and quantitative algorithms of wheat growth and management indices to variety types, ecological environments and production levels were analysed and extracted, and a dynamic knowledge model with temporal and spatial characters for wheat management(WheatKnow)was developed. By adopting the soft component characteristics as non language relevance , re-utilization and portable system maintenance. and by further integrating the wheat growth simulation model(WheatGrow)and intelligent system for wheat management, a comprehensive and digital knowledge model, growth model and component-based decision support system for wheat management(MBDSSWM)was established on the platforms of Visual C++ and Visual Basic. The MBDSSWM realized the effective integration and coupling of the prediction and decision-making functions for digital crop management.
基金Supported by a grant from the German Federal Ministry of Education and Research,No.01EO1302
文摘As the gap between a shortage of organs and the im-mense demand for liver grafts persists, every available donor liver needs to be optimized for utility, urgency and equity. To overcome this challenge, decision modelling might allow us to gather evidence from previous studies as well as compare the costs and consequences of alternative options. For public health policy and clinical intervention assessment, it is a potentially powerful tool. The most commonly used types of decision analytical models include decision trees, the Markov model, microsimulation, discrete event simulation and the system dynamic model. Analytic models could support decision makers in the field of liver transplantation when facing specifc problems by synthesizing evidence, comprising all relevant options, generalizing results to other contexts, extending the time horizon and exploring the uncertainty. For modeling studies of economic evaluation for transplantation, understanding the current nature of the disease is crucial, as well as the selection of appropriate modelling techniques. The quality and availability of data is another key element for the selection and development of decision analytical models. In addition, good practice guidelines should be complied, which is important for standardization and comparability between economic outputs.
基金supported by the National Natural Science Foundation of China(60874068).
文摘An approach for modeling a human cognitive framework in time-stressed decision making is presented. The recognitive and metacognitive processes that represent the cognitive framework are modeled by the colored Petri nets (CPNs). A structural and behavioral analysis method is adopted to obtain the static and dynamic property used to verify the CPNs model of the cognitive framework. Finally, an example from the command and control radar recognition system is used to evaluate the feasibility and availability of the CPNs model adopted in practical systems.
基金Project (No. K81077) supported by the Department of Automation, Xiamen University, China
文摘A vague-set-based fuzzy multi-objective decision making model is developed for evaluating bidding plans in a bid- ding purchase process. A group of decision-makers (DMs) first independently assess bidding plans according to their experience and preferences, and these assessments may be expressed as linguistic terms, which are then converted to fuzzy numbers. The resulting decision matrices are then transformed to objective membership grade matrices. The lower bound of satisfaction and upper bound of dissatisfaction are used to determine each bidding plan’s supporting, opposing, and neutral objective sets, which together determine the vague value of a bidding plan. Finally, a score function is employed to rank all bidding plans. A new score function based on vague sets is introduced in the model and a novel method is presented for calculating the lower bound of sat- isfaction and upper bound of dissatisfaction. In a vague-set-based fuzzy multi-objective decision making model, different valua- tions for upper and lower bounds of satisfaction usually lead to distinct ranking results. Therefore, it is crucial to effectively contain DMs’ arbitrariness and subjectivity when these values are determined.
基金This research work was funded by Institutional Fund Projects under grant no.(IFPIP:488-611-1443)Therefore,the authors gratefully acknowledge technical and financial support provided by Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia.
文摘The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet of Things(IoT),cloud computing,and big data,to transformthe conventional medical system in an all-around way,making healthcare highly effective,more personalized,and more convenient.This work designs a new Heap Based Optimization with Deep Quantum Neural Network(HBO-DQNN)model for decision-making in smart healthcare applications.The presented HBO-DQNN modelmajorly focuses on identifying and classifying healthcare data.In the presented HBO-DQNN model,three stages of operations were performed.Data normalization is applied to pre-process the input data at the initial stage.Next,the HBO algorithm is used in the second stage to choose an optimal set of features from the healthcare data.At last,the DQNN model is exploited for healthcare data classification.A series of experiments were carried out to portray the promising classifier results of the HBO-DQNN model.The extensive comparative study reported the improvements of the HBO-DQNN method over other existing models with maximum accuracy of 97.05%and 95.72%under the colon cancer and lymphoma dataset.
基金supported by German-Sino bilateral collaboration research project SuMaRiO funded by the German Federal Ministry of Education and Researchthe support of NSFC-UNEP Project (41361140361): Ecological Responses to Climatic Change and Land-cover Change in Arid and Semiarid Central Asia during the Past 500 Years
文摘Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementation of a decision support system(DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use management. Discharge and glacier geometry changes were simulated with hydrological model, water availability in semiarid environments. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were taken as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs as the models running parallel in the simulation periods. The DSS integrates the hydrological data, geographic data, social and economic statistical data, and establishes the relationships with equations, conditional statements and fuzzy logics. The programming is realized in C++. The DSS has four remarkable features:(1) editable land use maps to assist decision-making;(2) conjunctive use of surface and groundwater resources;(3) interactions among water, earth, ecosystem, and humans; and(4) links with hydrological models. The overall goal of the DSS is to combine the outputs of scientific models, knowledge of experts, and perspectives of stakeholders, into a computer-based system, which allows sustainability impact assessment within regional planning; and to understand ecosystem services and integrate them into land and water management.
基金Project supported by the National Natural Science Foundation ofChina (No. 40101014) and by the Science and technology Committee of Zhejiang Province (No. 001110445) China
文摘This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area.
基金supported by the Military Scentific Research Project(41405030302,41401020301).
文摘According to the requirements of the live-virtual-constructive(LVC)tactical confrontation(TC)on the virtual entity(VE)decision model of graded combat capability,diversified actions,real-time decision-making,and generalization for the enemy,the confrontation process is modeled as a zero-sum stochastic game(ZSG).By introducing the theory of dynamic relative power potential field,the problem of reward sparsity in the model can be solved.By reward shaping,the problem of credit assignment between agents can be solved.Based on the idea of meta-learning,an extensible multi-agent deep reinforcement learning(EMADRL)framework and solving method is proposed to improve the effectiveness and efficiency of model solving.Experiments show that the model meets the requirements well and the algorithm learning efficiency is high.