In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distri...In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them.展开更多
In this article, the authors study some limit properties for sequences of pairwise NQD random variables, which are not necessarily identically distributed. They obtain Baum and Katz complete convergence and the strong...In this article, the authors study some limit properties for sequences of pairwise NQD random variables, which are not necessarily identically distributed. They obtain Baum and Katz complete convergence and the strong stability of Jamison's weighted sums for pairwise NQD random variables, which may have different distributions. Some wellknown results are improved and extended.展开更多
M-negatively associated random variables, which generalizes the classical one of negatively associated random variables and includes m-dependent sequences as its particular case, are introduced and studied. Large devi...M-negatively associated random variables, which generalizes the classical one of negatively associated random variables and includes m-dependent sequences as its particular case, are introduced and studied. Large deviation principles and moderate deviation upper bounds for stationary m-negatively associated random variables are proved. Kolmogorov-type and Marcinkiewicz-type strong laws of large numbers as well as the three series theorem for m-negatively associated random variables are also given.展开更多
Let {Xn,n ≥ 1} be a sequence of α-stable random variables(0 < α < 2), {ani,1 ≤ i≤ n, n≥1} be an array of constant real numbers. Under some restriction of {ani,1 ≤ i ≤ n,n≥1}, the authors discuss the int...Let {Xn,n ≥ 1} be a sequence of α-stable random variables(0 < α < 2), {ani,1 ≤ i≤ n, n≥1} be an array of constant real numbers. Under some restriction of {ani,1 ≤ i ≤ n,n≥1}, the authors discuss the integral test for the weighted partial sums {Σi=1naniXi,n ≥ 1}, and obtain the Chover's laws of iterated logarithm(LIL) as corollaries.展开更多
Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is inv...Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [1] and Hu and Chang [2].展开更多
In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang...In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang in [1] to m-NA random variables.展开更多
In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑...In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established.展开更多
In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the c...In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the corresponding theorems of Stout [1], Thrum [2] and Hu et al. [3].展开更多
In the paper, the strong convergence properties for two different weighted sums of negatively orthant dependent(NOD) random variables are investigated. Let {X, n ≥ 1}be a sequence of NOD random variables. The results...In the paper, the strong convergence properties for two different weighted sums of negatively orthant dependent(NOD) random variables are investigated. Let {X, n ≥ 1}be a sequence of NOD random variables. The results obtained in the paper generalize the corresponding ones for i.i.d. random variables and identically distributed NA random variables to the case of NOD random variables, which are stochastically dominated by a random variable X. As a byproduct, the Marcinkiewicz-Zygmund type strong law of large numbers for NOD random variables is also obtained.展开更多
In this paper, we will present some strong convergence results for sequences of ψ-mixing random variables. The results for sequences of ψ-mixing random variables generalize the corresponding results for independent ...In this paper, we will present some strong convergence results for sequences of ψ-mixing random variables. The results for sequences of ψ-mixing random variables generalize the corresponding results for independent random variable sequences without any extra conditions.展开更多
The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to am...The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.展开更多
We give some theorems of strong law of large numbers and complete convergence for sequences of φ-mixing random variables. In particular, Wittmann's strong law of large numbers and Teicher's strong law of large nnum...We give some theorems of strong law of large numbers and complete convergence for sequences of φ-mixing random variables. In particular, Wittmann's strong law of large numbers and Teicher's strong law of large nnumbers for independent random variables are generalized to the case of φ -minxing random variables.展开更多
A general result on the strong convergence rate and complete convergence for arrays of rowwise extended negatively dependent random variables is established. As applications, some well-known results on negatively depe...A general result on the strong convergence rate and complete convergence for arrays of rowwise extended negatively dependent random variables is established. As applications, some well-known results on negatively dependent random variables can be easily extended to the case of arrays of rowwise extended negatively dependent random variables.展开更多
In this paper, the authors present some new results on complete moment convergence for arrays of rowwise negatively associated random variables. These results improve some previous known theorems.
In this paper, by the three series theorem of m-negatively associated(m-NA,in short) random variables and the truncation method of random variables, we mainly investigated the strong convergence properties for partial...In this paper, by the three series theorem of m-negatively associated(m-NA,in short) random variables and the truncation method of random variables, we mainly investigated the strong convergence properties for partial sums of m-NA random variables.In addition, the Khintchine-Kolmogorov convergence theorem and Kolmogorov-type strong law of large numbers for m-NA random variables are also obtained. The results obtained in the paper generalize some corresponding ones for independent random variables and some dependent random variables.展开更多
In this article, the strong laws of large numbers for array of rowwise asymptotically almost negatively associated(AANA) random variables are studied. Some sufficient conditions for strong laws of large numbers for ar...In this article, the strong laws of large numbers for array of rowwise asymptotically almost negatively associated(AANA) random variables are studied. Some sufficient conditions for strong laws of large numbers for array of rowwise AANA random variables are presented without assumption of identical distribution. Our results extend the corresponding ones for independent random variables to case of AANA random variables.展开更多
By using Rosenthal type moment inequality for extended negatively de- pendent random variables, we establish the equivalent conditions of complete convergence for weighted sums of sequences of extended negatively depe...By using Rosenthal type moment inequality for extended negatively de- pendent random variables, we establish the equivalent conditions of complete convergence for weighted sums of sequences of extended negatively dependent random variables under more general conditions. These results complement and improve the corresponding results obtained by Li et al. (Li D L, RAO M B, Jiang T F, Wang X C. Complete convergence and almost sure convergence of weighted sums of random variables. J. Theoret. Probab., 1995, 8: 49-76) and Liang (Liang H Y. Complete convergence for weighted sums of negatively associated random variables. Statist. Probab. Lett., 2000, 48: 317-325).展开更多
In this paper,we establish a Rosenthal-type inequality of partial sums for ρ~mixing random variables.As its applications,we get the complete convergence rates in the strong laws for ρ^-mixing random variables.The re...In this paper,we establish a Rosenthal-type inequality of partial sums for ρ~mixing random variables.As its applications,we get the complete convergence rates in the strong laws for ρ^-mixing random variables.The result obtained extends the corresponding result.展开更多
Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r...Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r 〈 2,p 〉 0) are given,which are the same as that in the independent case.展开更多
In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The resul...In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The result obtained generalize the results of Chen(2008) and extend those to negatively associated sequences and ρ^--mixing random variables.展开更多
基金National Natural Science Foundation of China (Grant Nos.12061028, 71871046)Support Program of the Guangxi China Science Foundation (Grant No.2018GXNSFAA281011)。
文摘In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them.
基金the National Natural Science Foundation of China(10671149)
文摘In this article, the authors study some limit properties for sequences of pairwise NQD random variables, which are not necessarily identically distributed. They obtain Baum and Katz complete convergence and the strong stability of Jamison's weighted sums for pairwise NQD random variables, which may have different distributions. Some wellknown results are improved and extended.
基金Partly supported by the National Natural Science Foundation of China and the Ministry of Education of ChinaPartly supported by the Science and Technology Research Item of Hubei Provincial Department of Education,Jiaghan University
文摘M-negatively associated random variables, which generalizes the classical one of negatively associated random variables and includes m-dependent sequences as its particular case, are introduced and studied. Large deviation principles and moderate deviation upper bounds for stationary m-negatively associated random variables are proved. Kolmogorov-type and Marcinkiewicz-type strong laws of large numbers as well as the three series theorem for m-negatively associated random variables are also given.
基金Supported by the National Natural Science Foundation of China (10271120)
文摘Let {Xn,n ≥ 1} be a sequence of α-stable random variables(0 < α < 2), {ani,1 ≤ i≤ n, n≥1} be an array of constant real numbers. Under some restriction of {ani,1 ≤ i ≤ n,n≥1}, the authors discuss the integral test for the weighted partial sums {Σi=1naniXi,n ≥ 1}, and obtain the Chover's laws of iterated logarithm(LIL) as corollaries.
文摘Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [1] and Hu and Chang [2].
基金Foundation item: Supported by the Humanities and Social Sciences Foundation for the Youth Scholars of Ministry of Education of China(12YJCZH217) Supported by the Natural Science Foundation of Anhui Province(1308085MA03) Supported by the Key Natural Science Foundation of Educational Committe of Anhui Province(KJ2014A255)
文摘In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang in [1] to m-NA random variables.
文摘In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established.
文摘In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the corresponding theorems of Stout [1], Thrum [2] and Hu et al. [3].
基金Supported by the National Natural Science Foundation of China(11671012,11501004,11501005)the Natural Science Foundation of Anhui Province(1508085J06)+2 种基金the Key Projects for Academic Talent of Anhui Province(gxbj ZD2016005)the Quality Engineering Project of Anhui Province(2016jyxm0047)the Graduate Academic Innovation Research Project of Anhui University(yfc100004)
文摘In the paper, the strong convergence properties for two different weighted sums of negatively orthant dependent(NOD) random variables are investigated. Let {X, n ≥ 1}be a sequence of NOD random variables. The results obtained in the paper generalize the corresponding ones for i.i.d. random variables and identically distributed NA random variables to the case of NOD random variables, which are stochastically dominated by a random variable X. As a byproduct, the Marcinkiewicz-Zygmund type strong law of large numbers for NOD random variables is also obtained.
基金Supported by the University Students Science Research Training Program of Anhui University(KYXL20110004)
文摘In this paper, we will present some strong convergence results for sequences of ψ-mixing random variables. The results for sequences of ψ-mixing random variables generalize the corresponding results for independent random variable sequences without any extra conditions.
基金Project(51335003)supported by the National Natural Science Foundation of ChinaProject(20111102110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.
基金Supported by the National Natural Science Foundation of China (10671149)
文摘We give some theorems of strong law of large numbers and complete convergence for sequences of φ-mixing random variables. In particular, Wittmann's strong law of large numbers and Teicher's strong law of large nnumbers for independent random variables are generalized to the case of φ -minxing random variables.
基金Supported by the National Natural Science Foundation of China(11201001) Supported by the Natural Science Foundation of Anhui Province(1208085QA03, 1308085QA03)+1 种基金 Supported by the Research Teaching Model Curriculum of Anhui University(xjyjkc1407) Supported by the Students Science Research Training Program of Anhui University(KYXL2014017)
Acknowledgement The authors are most grateful to the editor and anonymous referees for careful reading of the manuscript and valuable suggestions which helped in significantly improving an earlier version of this paper.
文摘A general result on the strong convergence rate and complete convergence for arrays of rowwise extended negatively dependent random variables is established. As applications, some well-known results on negatively dependent random variables can be easily extended to the case of arrays of rowwise extended negatively dependent random variables.
基金Foundation item: Supported by the Humanities and Social Sciences Foundation for the Youth Schol- ars of Ministry of Education of China(12YJCZH217) Supported by the National Natural Science Foun- dation of China(l1271020)+1 种基金 Supported by the Key Natural Science Foundation of Anhui Educational Committee(KJ2011A139) Supported by the Natural Science Foundation of Anhui Province(1308085MA03, 1208085MA 11)
文摘In this paper, the authors present some new results on complete moment convergence for arrays of rowwise negatively associated random variables. These results improve some previous known theorems.
基金Supported by the Natural Science Foundation of Anhui Province(1508085J06) the Key Projects for Academic Talent of Anhui Province(gxbj ZD2016005) the Students Innovative Training Project of Anhui University(201610357001)
文摘In this paper, by the three series theorem of m-negatively associated(m-NA,in short) random variables and the truncation method of random variables, we mainly investigated the strong convergence properties for partial sums of m-NA random variables.In addition, the Khintchine-Kolmogorov convergence theorem and Kolmogorov-type strong law of large numbers for m-NA random variables are also obtained. The results obtained in the paper generalize some corresponding ones for independent random variables and some dependent random variables.
基金Supported by the National Natural Science Foundation of China(lilT1001, 11201001) Supported by the Natural Science Foundation of Anhui Province(1208085QA03)+1 种基金 Supported by the Talents Youth Fund of Anhui Province Universities(2012SQRL204) Supported by th Doctoral Research Start-up Funds Projects of Anhui University(33190250)
文摘In this article, the strong laws of large numbers for array of rowwise asymptotically almost negatively associated(AANA) random variables are studied. Some sufficient conditions for strong laws of large numbers for array of rowwise AANA random variables are presented without assumption of identical distribution. Our results extend the corresponding ones for independent random variables to case of AANA random variables.
基金The NSF(11271020 and 11201004)of Chinathe NSF(10040606Q30 and 1208085MA11)of Anhui Provincethe NSF(KJ2012ZD01)of Education Department of Anhui Province
文摘By using Rosenthal type moment inequality for extended negatively de- pendent random variables, we establish the equivalent conditions of complete convergence for weighted sums of sequences of extended negatively dependent random variables under more general conditions. These results complement and improve the corresponding results obtained by Li et al. (Li D L, RAO M B, Jiang T F, Wang X C. Complete convergence and almost sure convergence of weighted sums of random variables. J. Theoret. Probab., 1995, 8: 49-76) and Liang (Liang H Y. Complete convergence for weighted sums of negatively associated random variables. Statist. Probab. Lett., 2000, 48: 317-325).
基金Supported by the National Science Foundation(10661006) Supported by Innovation Project of Guangxi Graduate Education(2007105960812M18)
文摘In this paper,we establish a Rosenthal-type inequality of partial sums for ρ~mixing random variables.As its applications,we get the complete convergence rates in the strong laws for ρ^-mixing random variables.The result obtained extends the corresponding result.
基金Supported by the National Natural Science Foundation of China (60874004)
文摘Let {Xn,n ≥ 1} be a sequence of identically distributed ρ^--mixing random variables and set Sn =∑i^n=1 Xi,n ≥ 1,the suffcient and necessary conditions for the existence of moments of supn≥1 |Sn/n^1/r|^p(0 〈 r 〈 2,p 〉 0) are given,which are the same as that in the independent case.
基金Supported by the National Science Foundation of China(10661006)Supported by Innovation Project of Guangxi Graduate Education(2007105960812M18)
文摘In this paper, we obtain the moment conditions for the supermun of normed sums of ρ^--mixing random variables by using the Rosenthal-type inequality for Maximum partial sums of ρ^--mixing random variables. The result obtained generalize the results of Chen(2008) and extend those to negatively associated sequences and ρ^--mixing random variables.