期刊文献+
共找到200篇文章
< 1 2 10 >
每页显示 20 50 100
Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models
1
作者 Vesal Khean Chomyong Kim +5 位作者 Sunjoo Ryu Awais Khan Min Kyung Hong Eun Young Kim Joungmin Kim Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2024年第10期773-787,共15页
Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their mov... Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture. 展开更多
关键词 Convolutional neural network deep learning human interaction recognition ResNet skeleton joint key points human pose estimation hybrid deep learning and machine learning
下载PDF
A method to predict the peak shear strength of rock joints based on machine learning
2
作者 BAN Li-ren ZHU Chun +3 位作者 HOU Yu-hang DU Wei-sheng QI Cheng-zhi LU Chun-sheng 《Journal of Mountain Science》 SCIE CSCD 2023年第12期3718-3731,共14页
In geotechnical and tunneling engineering,accurately determining the mechanical properties of jointed rock holds great significance for project safety assessments.Peak shear strength(PSS),being the paramount mechanica... In geotechnical and tunneling engineering,accurately determining the mechanical properties of jointed rock holds great significance for project safety assessments.Peak shear strength(PSS),being the paramount mechanical property of joints,has been a focal point in the research field.There are limitations in the current peak shear strength(PSS)prediction models for jointed rock:(i)the models do not comprehensively consider various influencing factors,and a PSS prediction model covering seven factors has not been established,including the sampling interval of the joints,the surface roughness of the joints,the normal stress,the basic friction angle,the uniaxial tensile strength,the uniaxial compressive strength,and the joint size for coupled joints;(ii)the datasets used to train the models are relatively limited;and(iii)there is a controversy regarding whether compressive or tensile strength should be used as the strength term among the influencing factors.To overcome these limitations,we developed four machine learning models covering these seven influencing factors,three relying on Support Vector Regression(SVR)with different kernel functions(linear,polynomial,and Radial Basis Function(RBF))and one using deep learning(DL).Based on these seven influencing factors,we compiled a dataset comprising the outcomes of 493 published direct shear tests for the training and validation of these four models.We compared the prediction performance of these four machine learning models with Tang’s and Tatone’s models.The prediction errors of Tang’s and Tatone’s models are 21.8%and 17.7%,respectively,while SVR_linear is at 16.6%,SVR_poly is at 14.0%,and SVR_RBF is at 12.1%.DL outperforms the two existing models with only an 8.5%error.Additionally,we performed shear tests on granite joints to validate the predictive capability of the DL-based model.With the DL approach,the results suggest that uniaxial tensile strength is recommended as the material strength term in the PSS model for more reliable outcomes. 展开更多
关键词 Peak shear strength Rock joints Prediction model Machine learning deep learning
下载PDF
Multi-Model Fusion Framework Using Deep Learning for Visual-Textual Sentiment Classification
3
作者 Israa K.Salman Al-Tameemi Mohammad-Reza Feizi-Derakhshi +1 位作者 Saeed Pashazadeh Mohammad Asadpour 《Computers, Materials & Continua》 SCIE EI 2023年第8期2145-2177,共33页
Multimodal Sentiment Analysis(SA)is gaining popularity due to its broad application potential.The existing studies have focused on the SA of single modalities,such as texts or photos,posing challenges in effectively h... Multimodal Sentiment Analysis(SA)is gaining popularity due to its broad application potential.The existing studies have focused on the SA of single modalities,such as texts or photos,posing challenges in effectively handling social media data with multiple modalities.Moreover,most multimodal research has concentrated on merely combining the two modalities rather than exploring their complex correlations,leading to unsatisfactory sentiment classification results.Motivated by this,we propose a new visualtextual sentiment classification model named Multi-Model Fusion(MMF),which uses a mixed fusion framework for SA to effectively capture the essential information and the intrinsic relationship between the visual and textual content.The proposed model comprises three deep neural networks.Two different neural networks are proposed to extract the most emotionally relevant aspects of image and text data.Thus,more discriminative features are gathered for accurate sentiment classification.Then,a multichannel joint fusion modelwith a self-attention technique is proposed to exploit the intrinsic correlation between visual and textual characteristics and obtain emotionally rich information for joint sentiment classification.Finally,the results of the three classifiers are integrated using a decision fusion scheme to improve the robustness and generalizability of the proposed model.An interpretable visual-textual sentiment classification model is further developed using the Local Interpretable Model-agnostic Explanation model(LIME)to ensure the model’s explainability and resilience.The proposed MMF model has been tested on four real-world sentiment datasets,achieving(99.78%)accuracy on Binary_Getty(BG),(99.12%)on Binary_iStock(BIS),(95.70%)on Twitter,and(79.06%)on the Multi-View Sentiment Analysis(MVSA)dataset.These results demonstrate the superior performance of our MMF model compared to single-model approaches and current state-of-the-art techniques based on model evaluation criteria. 展开更多
关键词 Sentiment analysis multimodal classification deep learning joint fusion decision fusion INTERPRETABILITY
下载PDF
Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System 被引量:2
4
作者 Thavavel Vaiyapuri Adel Binbusayyis 《Computers, Materials & Continua》 SCIE EI 2021年第9期3271-3288,共18页
In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owin... In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owing to the lack of accurately labeled network traffic data,many unsupervised feature representation learning models have been proposed with state-of-theart performance.Yet,these models fail to consider the classification error while learning the feature representation.Intuitively,the learnt feature representation may degrade the performance of the classification task.For the first time in the field of intrusion detection,this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder(DAE)for learning the robust feature representation and one-class support vector machine(OCSVM)for finding the more compact decision hyperplane for intrusion detection.Specially,the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously.This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection.Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model.First,the ablation evaluation on benchmark dataset,NSL-KDD validates the design decision of the proposed model.Next,the performance evaluation on recent intrusion dataset,UNSW-NB15 signifies the stable performance of the proposed model.Finally,the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods. 展开更多
关键词 CYBERSECURITY network intrusion detection deep learning autoencoder stacked autoencoder feature representational learning joint learning one-class classifier OCSVM
下载PDF
Joint Biomedical Entity and Relation Extraction Based on Multi-Granularity Convolutional Tokens Pairs of Labeling
5
作者 Zhaojie Sun Linlin Xing +2 位作者 Longbo Zhang Hongzhen Cai Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第9期4325-4340,共16页
Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of scholars.The biomedical corpus contains numerous complex long sentences and overlapping relati... Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of scholars.The biomedical corpus contains numerous complex long sentences and overlapping relational triples,making most generalized domain joint modeling methods difficult to apply effectively in this field.For a complex semantic environment in biomedical texts,in this paper,we propose a novel perspective to perform joint entity and relation extraction;existing studies divide the relation triples into several steps or modules.However,the three elements in the relation triples are interdependent and inseparable,so we regard joint extraction as a tripartite classification problem.At the same time,fromthe perspective of triple classification,we design amulti-granularity 2D convolution to refine the word pair table and better utilize the dependencies between biomedical word pairs.Finally,we use a biaffine predictor to assist in predicting the labels of word pairs for relation extraction.Our model(MCTPL)Multi-granularity Convolutional Tokens Pairs of Labeling better utilizes the elements of triples and improves the ability to extract overlapping triples compared to previous approaches.Finally,we evaluated our model on two publicly accessible datasets.The experimental results show that our model’s ability to extract relation triples on the CPI dataset improves the F1 score by 2.34%compared to the current optimal model.On the DDI dataset,the F1 value improves the F1 value by 1.68%compared to the current optimal model.Our model achieved state-of-the-art performance compared to other baseline models in biomedical text entity relation extraction. 展开更多
关键词 deep learning BIOMEDICAL joint extraction triple classification multi-granularity 2D convolution
下载PDF
Industrial Fusion Cascade Detection of Solder Joint
6
作者 Chunyuan Li Peng Zhang +2 位作者 Shuangming Wang Lie Liu Mingquan Shi 《Computers, Materials & Continua》 SCIE EI 2024年第10期1197-1214,共18页
With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,de... With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,detecting vehicle floor welding points poses unique challenges,including high operational costs and limited portability in practical settings.To address these challenges,this paper innovatively integrates template matching and the Faster RCNN algorithm,presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques.This algorithm meticulously weights and fuses the optimized features of both methodologies,enhancing the overall detection capabilities.Furthermore,it introduces an optimized multi-scale and multi-template matching approach,leveraging a diverse array of templates and image pyramid algorithms to bolster the accuracy and resilience of object detection.By integrating deep learning algorithms with this multi-scale and multi-template matching strategy,the cascaded target matching algorithm effectively accurately identifies solder joint types and positions.A comprehensive welding point dataset,labeled by experts specifically for vehicle detection,was constructed based on images from authentic industrial environments to validate the algorithm’s performance.Experiments demonstrate the algorithm’s compelling performance in industrial scenarios,outperforming the single-template matching algorithm by 21.3%,the multi-scale and multitemplate matching algorithm by 3.4%,the Faster RCNN algorithm by 19.7%,and the YOLOv9 algorithm by 17.3%in terms of solder joint detection accuracy.This optimized algorithm exhibits remarkable robustness and portability,ideally suited for detecting solder joints across diverse vehicle workpieces.Notably,this study’s dataset and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint detection capabilities.This work thus not only presents a novel and effective solution for industrial solder joint detection but lays the groundwork for future advancements in this critical area. 展开更多
关键词 Cascade object detection deep learning feature fusion multi-scale and multi-template matching solder joint dataset
下载PDF
DeepLabv3+与联合损失函数的遥感影像建筑物分割
7
作者 苏日亚 杨彦明 +1 位作者 安全 于建明 《信息技术》 2023年第7期38-42,共5页
快速、自动从遥感影像中提取建筑物可为城市管理、军事侦查、灾后应急评估等提供辅助决策依据。采用基于ResNet50_vd骨干网络的DeepLabv3+深度学习语义分割模型,结合BCE和Lovasz联合损失函数优化算法,实现遥感影像的建筑物提取。在Inri... 快速、自动从遥感影像中提取建筑物可为城市管理、军事侦查、灾后应急评估等提供辅助决策依据。采用基于ResNet50_vd骨干网络的DeepLabv3+深度学习语义分割模型,结合BCE和Lovasz联合损失函数优化算法,实现遥感影像的建筑物提取。在Inria数据集上训练、评估和预测结果显示,采用方法可成功提取遥感影像中的建筑物,准确率最高可达99.02%,mIOU最高可达88.55%。 展开更多
关键词 遥感影像 深度学习 语义分割 建筑物提取 联合损失函数
下载PDF
Knee Osteoarthritis Classification Using X-Ray Images Based on Optimal Deep Neural Network
8
作者 Abdul Haseeb Muhammad Attique Khan +4 位作者 Faheem Shehzad Majed Alhaisoni Junaid Ali Khan Taerang Kim Jae-Hyuk Cha 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2397-2415,共19页
X-Ray knee imaging is widely used to detect knee osteoarthritis due to ease of availability and lesser cost.However,the manual categorization of knee joint disorders is time-consuming,requires an expert person,and is ... X-Ray knee imaging is widely used to detect knee osteoarthritis due to ease of availability and lesser cost.However,the manual categorization of knee joint disorders is time-consuming,requires an expert person,and is costly.This article proposes a new approach to classifying knee osteoarthritis using deep learning and a whale optimization algorithm.Two pre-trained deep learning models(Efficientnet-b0 and Densenet201)have been employed for the training and feature extraction.Deep transfer learning with fixed hyperparameter values has been employed to train both selected models on the knee X-Ray images.In the next step,fusion is performed using a canonical correlation approach and obtained a feature vector that has more information than the original feature vector.After that,an improved whale optimization algorithm is developed for dimensionality reduction.The selected features are finally passed to the machine learning algorithms such as Fine-Tuned support vector machine(SVM)and neural networks for classification purposes.The experiments of the proposed framework have been conducted on the publicly available dataset and obtained the maximum accuracy of 90.1%.Also,the system is explained using Explainable Artificial Intelligence(XAI)technique called occlusion,and results are compared with recent research.Based on the results compared with recent techniques,it is shown that the proposed method’s accuracy significantly improved. 展开更多
关键词 Knee joints magnetic resonance imaging(MRI) deep learning FUSION optimization neural network
下载PDF
多区域注意力的细粒度图像分类网络 被引量:3
9
作者 白尚旺 王梦瑶 +1 位作者 胡静 陈志泊 《计算机工程》 CSCD 北大核心 2024年第1期271-278,共8页
目前细粒度图像分类的难点在于如何精准定位图像中高度可辨的局部区域以及其他辅助判别特征。提出一种多区域注意力的细粒度图像分类网络来解决这个问题。首先使用Inception-V3对图像特征进行提取,通过重复使用注意力擦除的方法使模型... 目前细粒度图像分类的难点在于如何精准定位图像中高度可辨的局部区域以及其他辅助判别特征。提出一种多区域注意力的细粒度图像分类网络来解决这个问题。首先使用Inception-V3对图像特征进行提取,通过重复使用注意力擦除的方法使模型关注次要特征;然后通过背景去除以及上采样的方法获取图像更精准的局部图像,对提取到的局部特征进行位置统计,并以矩形框的方式获取图像整体,减少细节信息丢失;最后对局部与整体图像进行更加细致的学习。此外,设计联合损失函数,通过动态平衡难易样本和缩小类内差距的方法改善模型的识别效果。实验结果表明,该方法在公开的细粒度图像数据集CUB-200-2011、Stanford-Cars和FGVC-Aircraft上的准确率分别达到89.2%、94.8%、94.0%,相较于对比方法性能更优。 展开更多
关键词 多区域注意力 细粒度图像分类 擦除策略 联合损失 深度学习 卷积神经网络
下载PDF
并行采集技术联合深度学习重建用于肩关节MRI
10
作者 颜青余 杨靖逸 温林 《中国介入影像与治疗学》 北大核心 2024年第9期557-560,共4页
目的观察并行采集技术(PAT)联合深度学习重建(DLR)用于肩关节MRI的价值。方法前瞻性纳入接受肩关节MR检查的74人,分别以标准序列(A组)、PAT加速序列(B组)及PAT加速序列联合DLR(C组)采集肩关节MRI。采用5分法对图像整体质量、伪影及显示... 目的观察并行采集技术(PAT)联合深度学习重建(DLR)用于肩关节MRI的价值。方法前瞻性纳入接受肩关节MR检查的74人,分别以标准序列(A组)、PAT加速序列(B组)及PAT加速序列联合DLR(C组)采集肩关节MRI。采用5分法对图像整体质量、伪影及显示解剖结构(关节软骨、韧带及骨髓)清晰度进行主观评价;计算关节软骨信噪比(SNR)及对比度噪声比(CNR)进行客观评价;比较3组主观及客观评价结果。结果A、C组间图像整体质量、伪影及显示解剖结构清晰度主观评分差异均无统计学意义(P均>0.05),均高于B组(P均<0.05)。C、A、B组之间,肩关节MRI关节软骨SNR及CNR依次降低(P均<0.05)。结论PAT联合DLR可缩短肩关节MR扫描时间、降低图像噪声、提高图像质量。 展开更多
关键词 肩关节 磁共振成像 深度学习 前瞻性研究 图像质量
下载PDF
电磁目标表征:知识-数据联合驱动新范式
11
作者 杨淑媛 杨晨 +1 位作者 冯志玺 潘求凯 《航空兵器》 CSCD 北大核心 2024年第2期17-31,共15页
电磁目标表征是电磁空间态势感知中的一项共性基础性问题。早期目标表征基于专家经验知识,需要设计者具有较强的专业背景与先验知识,其在复杂信号环境下的性能不佳。近年来发展起来的深度学习为复杂电磁环境下的目标信号表征提供了新的... 电磁目标表征是电磁空间态势感知中的一项共性基础性问题。早期目标表征基于专家经验知识,需要设计者具有较强的专业背景与先验知识,其在复杂信号环境下的性能不佳。近年来发展起来的深度学习为复杂电磁环境下的目标信号表征提供了新的途径,它通过模拟人脑的深层结构建立机器学习模型,以端到端的方式自动表征和处理目标数据,在电磁目标检测、分类、识别、参数估计、行为认知等感知任务中显示出良好的性能。然而,深度学习严重依赖海量高质量标注数据,在现实电磁环境中存在一定局限。将知识融入智能系统一直是人工智能的研究方向,结合知识与数据进行电磁目标表征,将有望提升目标感知精度与泛化能力,正在成为电磁目标表征中新的方向。本文回顾了电磁目标表征技术的发展过程,对新的知识-数据联合驱动的电磁目标感知范式进行了展望。 展开更多
关键词 目标表征 专家知识 深度学习 知识-数据联合驱动 知识图谱
下载PDF
基于联合深度统计特征对齐的鱼类目标识别方法
12
作者 王海燕 杜菲瑀 +1 位作者 姚海洋 陈晓 《陕西科技大学学报》 北大核心 2024年第3期182-187,196,共7页
水下鱼类目标识别技术是认识海洋、经略海洋、向海图强的重要技术之一.基于深度学习的水下目标识别技术已成为研究热点,但是针对水下鱼类数据小样本甚至零样本识别性能亟待提高.本文基于迁移学习,提出了联合深度统计特征对齐(Joint Deep... 水下鱼类目标识别技术是认识海洋、经略海洋、向海图强的重要技术之一.基于深度学习的水下目标识别技术已成为研究热点,但是针对水下鱼类数据小样本甚至零样本识别性能亟待提高.本文基于迁移学习,提出了联合深度统计特征对齐(Joint Deep Statistical Feature Alignment, JDSFA)方法,解决小样本下的鱼类目标识别问题.以ResNet-50作为骨干网络,将均方和协方差纳入权重选择算法用来构建自适应损失函数,对齐源域和目标域之间的特征分布,联合源域损失与领域间的自适应损失,设计全局损失函数,建立深度学习识别模型,实现鱼类目标识别任务.利用公开的水下鱼类数据集QUT进行实验验证,相比目前代表性的DADAN、PMTrans、DSAN方法,JDSFA方法的鱼类识别性能分别提升了3.59%、4.96%、5.91%,结果表明了本文JDSFA方法的有效性,并对鱼类目标识别具有良好的应用价值. 展开更多
关键词 鱼类识别 迁移学习 联合深度统计特征对齐 损失函数
下载PDF
基于度量学习的电路焊点缺陷检测方法
13
作者 刘少丽 戚慧志 +1 位作者 杜浩浩 邓超 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第6期625-634,共10页
针对目前电路焊点缺陷检测方法效率低、准确度差、焊点图像样本量小的问题,提出了一种基于度量学习的快速识别焊点缺陷的方法.首先利用工业相机搭配远心镜头获取焊点图像.通过挖掘焊点图像特征,设计交点检测法来分割焊接单元图像,制作... 针对目前电路焊点缺陷检测方法效率低、准确度差、焊点图像样本量小的问题,提出了一种基于度量学习的快速识别焊点缺陷的方法.首先利用工业相机搭配远心镜头获取焊点图像.通过挖掘焊点图像特征,设计交点检测法来分割焊接单元图像,制作焊点缺陷数据集.在此基础上,设计焊点图像全局特征与局部表征提取方法来对焊点的两类特征进行融合,并对注意力机制进行改进,加入到全局特征提取模块中.对焊点缺陷的检测实验结果表明该方法最终实现了准确率达到98.4%,满足焊点缺陷检测的实际生产要求. 展开更多
关键词 焊点检测 图像分割 深度学习 度量学习 特征融合
下载PDF
面向病理图像分割的边缘感知网络
14
作者 黄鸿 杨沂川 +2 位作者 王龙 郑福建 吴剑 《光子学报》 EI CAS CSCD 北大核心 2024年第1期78-90,共13页
提出了一种针对病理切片图像的端到端语义分割方法--边缘感知网络(BPNet),以提高病理图像分割精度。BPNet网络首先在解码器阶段增加边缘感知模块,改善网络对于病理图像边缘的特征信息提取能力。然后,采用自适应通道注意力模块弥补不同... 提出了一种针对病理切片图像的端到端语义分割方法--边缘感知网络(BPNet),以提高病理图像分割精度。BPNet网络首先在解码器阶段增加边缘感知模块,改善网络对于病理图像边缘的特征信息提取能力。然后,采用自适应通道注意力模块弥补不同层次特征间的语义差距,进一步加强网络的特征聚合能力。在此基础上,设计了一种基于结构和边缘的联合损失函数,以实现最佳的病理图像分割结果。在GlaS和MoNuSeg两个公开病理数据集上的分割实验结果表明,所提方法的Dice系数得分在两个数据集上分别达到92.21%和81.18%,有效提升了病理图像的分割精度。 展开更多
关键词 病理图像 自动分割 深度学习 边缘增强 联合损失函数
下载PDF
基于声发射信号时频图深度学习的桥梁钢桁架焊接节点损伤程度识别
15
作者 李丹 沈鹏 +1 位作者 贺文宇 向抒林 《振动与冲击》 EI CSCD 北大核心 2024年第1期107-115,122,共10页
针对桥梁钢桁架疲劳损伤识别难度大、精度低的现状,提出基于声发射信号时频分析与深度学习的钢桁架焊接节点损伤程度识别方法。对桁架节点在桥梁运营状态下产生的声发射信号进行小波变换,表征不同损伤程度信号的时频能量分布模式,然后... 针对桥梁钢桁架疲劳损伤识别难度大、精度低的现状,提出基于声发射信号时频分析与深度学习的钢桁架焊接节点损伤程度识别方法。对桁架节点在桥梁运营状态下产生的声发射信号进行小波变换,表征不同损伤程度信号的时频能量分布模式,然后建立卷积神经网络(convolutional neural network,CNN)模型对时频图进行损伤特征提取,并通过迁移学习思想提升模型的训练效率和学习能力,从而实现桁架焊接节点严重损伤、轻微损伤和噪声工况的准确识别。进一步对模型各卷积层激活区域进行可视化分析,解剖模型的损伤特征学习过程及分类逻辑。某悬索桥中央纵向腹板钢桁架焊接节点现场试验结果表明:相较于利用时域波形进行特征学习的一维卷积神经网络模型,时频图包含了更丰富的损伤信息,所建立的二维卷积神经网络模型对钢桁架焊接节点三种损伤程度的识别准确率超过94%,具有更强鲁棒性和实际应用价值。 展开更多
关键词 钢桁架 焊接节点 损伤程度 声发射(AE) 时频分析 深度学习
下载PDF
深度学习用于肩关节影像学研究进展 被引量:1
16
作者 郑喻文 武玉花 +3 位作者 陈晓飞 董馥闻 王平 周晟 《中国医学影像技术》 CSCD 北大核心 2024年第2期302-305,共4页
肩痛在肌肉骨骼疼痛中居第三位,人群患病率较高,早期诊断至关重要。深度学习(DL)技术用于肩关节影像学有利于临床诊治肩部疾病及评估预后。本文对DL技术在肩关节影像学中的研究进展进行综述。
关键词 肩关节 诊断显像 深度学习
下载PDF
基于联合神经网络的投诉预测模型研究 被引量:1
17
作者 马晓亮 刘英 高洁 《电信科学》 北大核心 2024年第1期48-58,共11页
对影响电信运营商重复投诉的关键因素进行深入探讨,旨在提高服务质量并构建风险预测模型。基于运营商客服数据,研究采用了Logistic回归、BP神经网络以及二者联合建模的方法。Logistic回归模型确定了5个主要影响因素,预测重复投诉发生的... 对影响电信运营商重复投诉的关键因素进行深入探讨,旨在提高服务质量并构建风险预测模型。基于运营商客服数据,研究采用了Logistic回归、BP神经网络以及二者联合建模的方法。Logistic回归模型确定了5个主要影响因素,预测重复投诉发生的概率,精度达到80.0%。BP神经网络则选取了81个影响因素,预测精度为90.6%。在此基础上,构建了联合模型,其精度高达92.8%。实际应用于某省会电信运营商后,重复投诉率下降了3.2%,成效显著,为提高电信运营商服务质量、降低重复投诉率提供了有力支持,对我国电信行业发展具有重要意义。 展开更多
关键词 AI客服 联合建模 重复投诉 LOGISTIC回归 深度学习模型
下载PDF
基于两阶段深度强化学习算法的多智能体自由合谋竞价机理研究 被引量:1
18
作者 刘飞宇 王吉文 +1 位作者 王正风 王蓓蓓 《中国电机工程学报》 EI CSCD 北大核心 2024年第12期4626-4638,I0004,共14页
电力市场建设初期,不完善的监管机制为发电商提供了暗中交流,联合竞价的机会。然而,如何找到潜在的发电商合谋组合是相对困难的事情。针对这一问题,该文建立一种允许发电商自由联合的竞价模型,并提出全新的两阶段深度强化学习算法,来求... 电力市场建设初期,不完善的监管机制为发电商提供了暗中交流,联合竞价的机会。然而,如何找到潜在的发电商合谋组合是相对困难的事情。针对这一问题,该文建立一种允许发电商自由联合的竞价模型,并提出全新的两阶段深度强化学习算法,来求解由离散的合谋对象选择和连续的报价系数确定组合形成的离散、连续动作混合决策问题。在不同阻塞情况下,对发电商联合策略形成过程进行分析,并在大算例中验证了算法的有效性。仿真结果表明,所提出的方法可以对市场主体的自由联合行为进行有效模拟,发现潜在的合谋组合。 展开更多
关键词 两阶段深度强化学习 自由联合 多智能体仿真 合谋竞价
下载PDF
基于深度学习的图像重建在提高颞下颌关节MRI图像质量中的初步应用研究
19
作者 王春杰 单艺 +6 位作者 张越 武春雪 刘灿 王静娟 吴涛 葛献鹏 卢洁 《磁共振成像》 CAS CSCD 北大核心 2024年第10期3-7,21,共6页
目的探讨深度学习重建(deep learning reconstruction,DLR)技术在提高颞下颌关节MRI快速自旋回波-质子密度加权成像(fast-spin echo proton density weighted imaging,FSE-PD)图像质量及缩短扫描时间中的应用价值。材料与方法招募40名... 目的探讨深度学习重建(deep learning reconstruction,DLR)技术在提高颞下颌关节MRI快速自旋回波-质子密度加权成像(fast-spin echo proton density weighted imaging,FSE-PD)图像质量及缩短扫描时间中的应用价值。材料与方法招募40名健康志愿者,进行颞下颌关节MRI扫描,对每名健康志愿者行颞下颌关节MRI常规FSE-PD扫描和DLR加速FSE-PD扫描,并保存未施加DLR的加速FSE-PD原始图像。两名放射科医师分别对3组FSE-PD图像质量进行定性、定量评价。定性评价使用Likert量表(5分法)对图像解剖结构清晰度及整体图像质量进行主观评分。定量评价采用信噪比(signal-to-noise ratio,SNR)和对比噪声比(contrast-to-noise ratio,CNR)对图像质量进行客观评价。采用单因素方差分析和Kruskal-Wallis检验比较三组图像主观评分和客观指标的差异。采用组内相关系数(intra-class correlation coefficient,ICC)评估两名放射科医师主观评分的一致性。结果与常规FSE-PD组相比,DLR快速FSE-PD组扫描时间缩短了67%。两名放射科医师对图像解剖结构清晰度及整体图像质量主观评分的一致性较好(ICC分别为0.80、0.78),常规FSE-PD组、快速FSE-PD组和DLR快速FSE-PD组的图像解剖结构清晰度及整体图像质量评分差异均有统计学意义(P<0.05);三组FSE-PD图像间的SNR、CNR差异有统计学意义(P<0.05);DLR快速FSE-PD组的定性及定量评价结果均显著优于常规FSE-PD组。结论DLR技术可以缩短颞下颌关节MRI常规FSE-PD序列检查的扫描时间,提高图像质量,有助于患者更快地完成检查。 展开更多
关键词 颞下颌关节 深度学习 图像重建 磁共振成像 图像质量
下载PDF
基于时间序列融合的室内定位方法
20
作者 余莲杰 李建峰 +1 位作者 徐睿 张小飞 《数据采集与处理》 CSCD 北大核心 2024年第3期750-760,共11页
提出了一种基于拉依达准则-相关系数-卷积神经网络(Pauta criterion-correlation coefficient-convolutional neural networks,P-C-CNN)的时间序列融合定位算法。P-C-CNN方法整合了不同节点以及不同时间序列的数据点,利用时间和空间数... 提出了一种基于拉依达准则-相关系数-卷积神经网络(Pauta criterion-correlation coefficient-convolutional neural networks,P-C-CNN)的时间序列融合定位算法。P-C-CNN方法整合了不同节点以及不同时间序列的数据点,利用时间和空间数据的相互关联性,提高了室内定位的精度和可靠性。首先,该方法使用拉依达准则-相关系数(Pauta criterion-correlation coefficient,P-C)算法对到达角度(Angle of arrival,AOA)-接收信号强度(Received signal strength,RSS)数据的异常值进行剔除,提高了训练数据的质量。其次,算法对数据进行随机间隔选取,从而缩短模型训练时间,同时较好地模拟在线定位阶段数据选取的不确定性,减少模型对训练数据的过度拟合。再次,传统单帧信息训练方法由于噪声混杂无法稳定提取信息特征,所提算法在连续采集的时间序列数据中,融合随机选取固定长度的多帧AOA-RSS数据,然后利用卷积神经网络(Convolutional neural networks,CNN)进行特征提取,避免了单帧信号定位中误差波动较大的问题。最后,通过大量实际测试,验证了所提方法的有效性。实验结果表明,在典型室内环境中,与仅采用RSS数据或者AOA信息的指纹定位算法相比,本文算法的分类准确率由91.6%提高到了96.4%,定位精度从1.3 m提高到了0.3 m;与传统基于模型的AOA-RSS联合定位相比,本文算法能较好解决实测中多径效应等干扰因素的影响,定位精度从1.1 m提高到了0.3 m。 展开更多
关键词 室内定位 深度学习 卷积神经网络 联合定位 时间序列
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部