Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generaliz...Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.展开更多
A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) proble...A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.展开更多
In this paper,we investigate the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant trapezoid fuzzy information.Firstly,inspired by the idea of hesitant fuzzy sets...In this paper,we investigate the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant trapezoid fuzzy information.Firstly,inspired by the idea of hesitant fuzzy sets and trapezoid fuzzy numbers,the definition of hesitant trapezoid fuzzy set and some operational laws of hesitant trapezoid fuzzy elements are proposed.Then some hesitant trapezoid fuzzy aggregation operators based on Hamacher operation are developed,such as the hesitant trapezoid fuzzy Hamacher weighted average(HTr FHWA)operator,the hesitant trapezoid fuzzy Hamacher weighted geometric(HTr FHWG)operator,the hesitant trapezoid fuzzy Hamacher Choquet average(HTr FHCA),the hesitant trapezoid fuzzy Hamacher Choquet geometric(HTr FHCG),etc.Furthermore,an approach based on the hesitant trapezoid fuzzy Hamacher weighted average(HTr FHWA)operator and the hesitant trapezoid fuzzy Hamacher weighted geometric(HTr FHWG)operator is proposed for MADM problems under hesitant trapezoid fuzzy environment.Finally,a numerical example for supplier selection is given to illustrate the application of the proposed approach.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.71571128the Humanities and Social Sciences Foundation of Ministry of Education of the People’s Republic of China(No.17XJA630003).
文摘Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.
基金supported by the National Natural Science Foundation of China(51375389)
文摘A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
基金Supported by the Science and Technology Research Project of Chongqing Municipal Education Commission(KJQN201901505)the Key Project of Humanities and Social Sciences Research of Chongqing Education Commission in 2019(19SKGH181)
文摘In this paper,we investigate the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant trapezoid fuzzy information.Firstly,inspired by the idea of hesitant fuzzy sets and trapezoid fuzzy numbers,the definition of hesitant trapezoid fuzzy set and some operational laws of hesitant trapezoid fuzzy elements are proposed.Then some hesitant trapezoid fuzzy aggregation operators based on Hamacher operation are developed,such as the hesitant trapezoid fuzzy Hamacher weighted average(HTr FHWA)operator,the hesitant trapezoid fuzzy Hamacher weighted geometric(HTr FHWG)operator,the hesitant trapezoid fuzzy Hamacher Choquet average(HTr FHCA),the hesitant trapezoid fuzzy Hamacher Choquet geometric(HTr FHCG),etc.Furthermore,an approach based on the hesitant trapezoid fuzzy Hamacher weighted average(HTr FHWA)operator and the hesitant trapezoid fuzzy Hamacher weighted geometric(HTr FHWG)operator is proposed for MADM problems under hesitant trapezoid fuzzy environment.Finally,a numerical example for supplier selection is given to illustrate the application of the proposed approach.