The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions...The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions of the considered system is defined in terms of the Caputo fractional Dini derivative. Based on the Lyapunov-Razumikhin method, several sufficient criteria are established to guarantee the finite-time stability and the finite-time contractive stability of solutions for the related systems. An example is provided to illustrate the effectiveness of the obtained results.展开更多
In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniq...In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniqueness of solutions for fractional differential equations with multiple delays. Using the theorem, we discuss the fractional chaos neuron model.展开更多
This paper investigates the nonemptiness and compactness of the mild solution set for a class of Riemann-Liouville fractional delay differential variational inequalities,which are formulated by a Riemann-Liouville fra...This paper investigates the nonemptiness and compactness of the mild solution set for a class of Riemann-Liouville fractional delay differential variational inequalities,which are formulated by a Riemann-Liouville fractional delay evolution equation and a variational inequality.Our approach is based on the resolvent technique and a generalization of strongly continuous semigroups combined with Schauder's fixed point theorem.展开更多
In this paper, we investigate the nonlinear neutral fractional integral-differential equation involving conformable fractional derivative and integral. First of all, we give the form of the solution by lemma. Furtherm...In this paper, we investigate the nonlinear neutral fractional integral-differential equation involving conformable fractional derivative and integral. First of all, we give the form of the solution by lemma. Furthermore, existence results for the solution and sufficient conditions for uniqueness solution are given by the Leray-Schauder nonlinear alternative and Banach contraction mapping principle. Finally, an example is provided to show the application of results.展开更多
In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and wei...In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and weighted shifted Grünwald difference(WSGD)operators to approximate the Riesz fractional derivative and present the finite difference method for the RFADED.Firstly,the FBDF2 and the shifted Grünwald methods are introduced.Secondly,based on the FBDF2 method and the WSGD operators,the finite difference method is applied to the problem.We also show that our numerical schemes are conditionally stable and convergent with the accuracy of O(+h2)and O(2+h2)respectively.Thirdly we find the analytical solution for RFDED in terms Mittag-Leffler type functions.Finally,some numerical examples are given to show the efficacy of the numerical methods and the results are found to be in complete agreement with the analytical solution.展开更多
This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measur...This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using a fixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results.展开更多
We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their...We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.展开更多
By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the res...By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.展开更多
In this paper,a new and general existence and uniqueness theorem of almost automorphic mild solutions is obtained for some fractional delay differential equations,using sectorial operators and the Banach contraction p...In this paper,a new and general existence and uniqueness theorem of almost automorphic mild solutions is obtained for some fractional delay differential equations,using sectorial operators and the Banach contraction principle.展开更多
In this paper,we investigate the dependence of the solutions on the parameters(order,initial function,right-hand function)of fractional delay differential equations(FDDEs)with the Caputo fractional derivative.Some res...In this paper,we investigate the dependence of the solutions on the parameters(order,initial function,right-hand function)of fractional delay differential equations(FDDEs)with the Caputo fractional derivative.Some results including an estimate of the solutions of FDDEs are given respectively.Theoretical results are verified by some numerical examples.展开更多
A class of nonlinear fractional order differential equations with delay is investigated in this paper. Using Leray-Schauder fixed point theorem and the contraction mapping theorem, we obtain some sufficient conditions...A class of nonlinear fractional order differential equations with delay is investigated in this paper. Using Leray-Schauder fixed point theorem and the contraction mapping theorem, we obtain some sufficient conditions for the existence and uniqueness of solutions to the fractional order differential equations.展开更多
In this paper, we consider the existence of mild solution to a class of neutral fractional differential equations with infinite delay. By means of fixed points methods, we obtain some sufficient conditions for the exi...In this paper, we consider the existence of mild solution to a class of neutral fractional differential equations with infinite delay. By means of fixed points methods, we obtain some sufficient conditions for the existence and uniqueness of mild solutions, which extend some known results.展开更多
We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transf...We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transformation argument, we establish the quadratic transportation inequalities for the law of the mild solution of those equations driven by fractional Brownian motion under the L2 metric and the uniform metric.展开更多
In this paper we study the controllability of linear and nonlinear stochastic fractional systems with bounded operator having distributed delay in control.The necessary and sufficient conditions for controllability of...In this paper we study the controllability of linear and nonlinear stochastic fractional systems with bounded operator having distributed delay in control.The necessary and sufficient conditions for controllability of the linear system is obtained.Also,the nonlinear system is shown controllable under the assumption that the corresponding linear system is controllable and using the Banach contraction principle.展开更多
基金Natural Science Foundation of Shanghai,China (No.19ZR1400500)。
文摘The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions of the considered system is defined in terms of the Caputo fractional Dini derivative. Based on the Lyapunov-Razumikhin method, several sufficient criteria are established to guarantee the finite-time stability and the finite-time contractive stability of solutions for the related systems. An example is provided to illustrate the effectiveness of the obtained results.
文摘In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniqueness of solutions for fractional differential equations with multiple delays. Using the theorem, we discuss the fractional chaos neuron model.
基金supported by the National Natural Science Foundation of China(11772306)Natural Science Foundation of Guangxi Province(2018GXNSFAA281021)+2 种基金Guangxi Science and Technology Base Foundation(AD20159017)the Foundation of Guilin University of Technology(GUTQDJJ2017062)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUGGC05).
文摘This paper investigates the nonemptiness and compactness of the mild solution set for a class of Riemann-Liouville fractional delay differential variational inequalities,which are formulated by a Riemann-Liouville fractional delay evolution equation and a variational inequality.Our approach is based on the resolvent technique and a generalization of strongly continuous semigroups combined with Schauder's fixed point theorem.
文摘In this paper, we investigate the nonlinear neutral fractional integral-differential equation involving conformable fractional derivative and integral. First of all, we give the form of the solution by lemma. Furthermore, existence results for the solution and sufficient conditions for uniqueness solution are given by the Leray-Schauder nonlinear alternative and Banach contraction mapping principle. Finally, an example is provided to show the application of results.
文摘In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and weighted shifted Grünwald difference(WSGD)operators to approximate the Riesz fractional derivative and present the finite difference method for the RFADED.Firstly,the FBDF2 and the shifted Grünwald methods are introduced.Secondly,based on the FBDF2 method and the WSGD operators,the finite difference method is applied to the problem.We also show that our numerical schemes are conditionally stable and convergent with the accuracy of O(+h2)and O(2+h2)respectively.Thirdly we find the analytical solution for RFDED in terms Mittag-Leffler type functions.Finally,some numerical examples are given to show the efficacy of the numerical methods and the results are found to be in complete agreement with the analytical solution.
基金supported by the National Natural Science Foundation of China(11471230,11671282)。
文摘This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using a fixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results.
文摘We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.
文摘By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.
基金supported by the NNSF of China (Grant No.11026098,11026150 and11171191)
文摘In this paper,a new and general existence and uniqueness theorem of almost automorphic mild solutions is obtained for some fractional delay differential equations,using sectorial operators and the Banach contraction principle.
基金This work is supported by the NSF of China projects(No.10971175,10871207)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20094301110001)+1 种基金NSF of Hunan Province(No.09JJ3002,10JJ7001)the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province of China,and NSF of Guangdong Province(No.10151601501000003).
文摘In this paper,we investigate the dependence of the solutions on the parameters(order,initial function,right-hand function)of fractional delay differential equations(FDDEs)with the Caputo fractional derivative.Some results including an estimate of the solutions of FDDEs are given respectively.Theoretical results are verified by some numerical examples.
文摘A class of nonlinear fractional order differential equations with delay is investigated in this paper. Using Leray-Schauder fixed point theorem and the contraction mapping theorem, we obtain some sufficient conditions for the existence and uniqueness of solutions to the fractional order differential equations.
基金financed by NSF of Anhui Province (090416237)NNSF of China (10971229)+4 种基金the 211 Project of Anhui University (02303129 KJTD002B)the Foundation of Anhui Education Bureau(KJ2009A49 KJ2009AZ005)Research Fund for the Doctoral Program of Higher Education(20103401120002)
文摘In this paper, we consider the existence of mild solution to a class of neutral fractional differential equations with infinite delay. By means of fixed points methods, we obtain some sufficient conditions for the existence and uniqueness of mild solutions, which extend some known results.
基金Acknowledgements The authors would like to thank the referees for helpful suggestions which allowed them to improve the presentation of this paper. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11271093) and the Science Research Project of Hubei Provincial Department Of Education (No. Q20141306).
文摘We discuss stochastic functional partial differential equations and neutral partial differential equations of retarded type driven by fractional Brownian motion with Hurst parameter H 〉 1/2. Using the Girsanov transformation argument, we establish the quadratic transportation inequalities for the law of the mild solution of those equations driven by fractional Brownian motion under the L2 metric and the uniform metric.
基金the University Grants Commission[grant number MANF-2015-17-TAM-50645]from the government of India。
文摘In this paper we study the controllability of linear and nonlinear stochastic fractional systems with bounded operator having distributed delay in control.The necessary and sufficient conditions for controllability of the linear system is obtained.Also,the nonlinear system is shown controllable under the assumption that the corresponding linear system is controllable and using the Banach contraction principle.