A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with re...A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with receiver antenna selection (ZFBF-AS) achieves considerable throughput improvement over the ZFBF scheme with single receiver antenna. The results also show that, with multi-user diversity, the ZFBF-AS scheme approaches the throughput performance of the ZFBF scheme using all receiver antennas (ZFBF-WO-AS) when the base station adopts semi-orthogonal user selection (SUS) algorithm, and achieves larger throughput when the base station adopts the Round-robin scheduling algorithm. Compared with ZFBF-WO-AS, the proposed ZFBF-AS scheme can reduce the cost of user equipments and the channel state information requirement at the transmitter (CSIT) as well as the multiuser scheduling complexity at the transmitter.展开更多
Coordinated multi-point transmission/reception, CoMP, technique converts the interference signal into the useful information by controlling the interfering signals among adjacent cells. Theoretically, it is a breakthr...Coordinated multi-point transmission/reception, CoMP, technique converts the interference signal into the useful information by controlling the interfering signals among adjacent cells. Theoretically, it is a breakthrough from the traditional interference limited non-cooperative single point transmission system, improving link reliability and enhancing the data rate. CoMP is regarded as one of the most essential and effective techniques in eliminating the inter-cell interference, boosting cell edge throughput and overall system throughput. CoMP technique has obvious advantages in TDD(time division duplexing) cellular mobile system; the necessary channel state information for CoMP can be easily obtained through channel reciprocity property in TDD system. CoMP scheme in TDD system and likely problems are analyzed in this paper, and it is shown by system simulations that the significant gain can be achieved.展开更多
A 48 mm x 60 mm x 1 mm miniaturized multi band antenna based on deformed split ring re sonators was presented. The antenna was consisted of a micro strip line and a deformed split square ring. Its/S11/parameters were...A 48 mm x 60 mm x 1 mm miniaturized multi band antenna based on deformed split ring re sonators was presented. The antenna was consisted of a micro strip line and a deformed split square ring. Its/S11/parameters were determined through numerical simulation and experimental measure ment within three working bands of 2.6 GHz to 3. 0 GHz, 3. 9 GHz to 4. 4 GHz and 5.2 GHz to 5. 8 GHz and the results showed that the parameters within all the bands were less than 10 dB. The gain at every frequency for the antenna was above 2.2 dB and it increased monotonously with the frequency from 5. 5 GHz to 7. 0 GHz.展开更多
为满足卫星通信中双频共口径、高集成、多波束等要求,提出了一种基于封装天线(Antenna in Package, AIP)架构的Ka频段收发共口径多波束相控阵天线。天线以双频堆叠微带单元的形式实现了收发共口径,并通过天线集成滤波器保证了收发通道...为满足卫星通信中双频共口径、高集成、多波束等要求,提出了一种基于封装天线(Antenna in Package, AIP)架构的Ka频段收发共口径多波束相控阵天线。天线以双频堆叠微带单元的形式实现了收发共口径,并通过天线集成滤波器保证了收发通道的隔离度优于44 dB。在±60°范围内,64元接收阵增益优于17.4 dB,128元发射阵增益优于20.2 dB,具有良好的波束扫描性能。为获得收发多波束一片式集成,在收发(Transmitter/Receiver, T/R)组件中使用晶圆级三维系统集成封装(Three Dimensions System in Package, 3D-SIP)并结合微凸点的制备技术,保证了系统级芯片(System-on-Chip, SOC)的高密度二次集成。高低频混压技术同样被应用于阵面、收发网络、控制供电链路的多层板集成。所提多波束的相控阵天线新架构具有高密度集成TR组件、多波束一体化、高效散热等特点,在卫星通信和数据链等方面具有广阔的应用前景。展开更多
This paper presents a multi-antenna GPS based system developed for local continuous deformation monitoring. Due to a large number of points that needs to be monitored, the standard approaches of using permanent GPS re...This paper presents a multi-antenna GPS based system developed for local continuous deformation monitoring. Due to a large number of points that needs to be monitored, the standard approaches of using permanent GPS receiver arrays will cause high cost. It eventually becomes the limiting factor for large-scale use of GPS in these application areas. Multi-antenna GPS system allows a number of GPS antennas to be linked to one GPS receiver by a specially designed electronic component, i. e. the so-called GPS multi-antenna switch (GMS), The receiver takes data sequentially from each of the antennas attached to the receiver. A distinctive advantage of the approach is that one GPS receiver can be used to monitor more than one point. The cost per monitored point (i. e. the expenses of hardware) is therefore significantly reduced.展开更多
基金supported by the National Natural Science Foundation of China (60496314)the National High Technology Research and Development Program of China (2006AA01Z266).
文摘A study on the zero-forcing beamforming (ZFBF) scheme with antenna selection at user terminals in downlink multi-antenna multi-user systems is presented. Simulation results show that the proposed ZFBF scheme with receiver antenna selection (ZFBF-AS) achieves considerable throughput improvement over the ZFBF scheme with single receiver antenna. The results also show that, with multi-user diversity, the ZFBF-AS scheme approaches the throughput performance of the ZFBF scheme using all receiver antennas (ZFBF-WO-AS) when the base station adopts semi-orthogonal user selection (SUS) algorithm, and achieves larger throughput when the base station adopts the Round-robin scheduling algorithm. Compared with ZFBF-WO-AS, the proposed ZFBF-AS scheme can reduce the cost of user equipments and the channel state information requirement at the transmitter (CSIT) as well as the multiuser scheduling complexity at the transmitter.
文摘Coordinated multi-point transmission/reception, CoMP, technique converts the interference signal into the useful information by controlling the interfering signals among adjacent cells. Theoretically, it is a breakthrough from the traditional interference limited non-cooperative single point transmission system, improving link reliability and enhancing the data rate. CoMP is regarded as one of the most essential and effective techniques in eliminating the inter-cell interference, boosting cell edge throughput and overall system throughput. CoMP technique has obvious advantages in TDD(time division duplexing) cellular mobile system; the necessary channel state information for CoMP can be easily obtained through channel reciprocity property in TDD system. CoMP scheme in TDD system and likely problems are analyzed in this paper, and it is shown by system simulations that the significant gain can be achieved.
基金Supported by the Beijing Institute of Technology Science Foundation(5745320094857)
文摘A 48 mm x 60 mm x 1 mm miniaturized multi band antenna based on deformed split ring re sonators was presented. The antenna was consisted of a micro strip line and a deformed split square ring. Its/S11/parameters were determined through numerical simulation and experimental measure ment within three working bands of 2.6 GHz to 3. 0 GHz, 3. 9 GHz to 4. 4 GHz and 5.2 GHz to 5. 8 GHz and the results showed that the parameters within all the bands were less than 10 dB. The gain at every frequency for the antenna was above 2.2 dB and it increased monotonously with the frequency from 5. 5 GHz to 7. 0 GHz.
文摘为满足卫星通信中双频共口径、高集成、多波束等要求,提出了一种基于封装天线(Antenna in Package, AIP)架构的Ka频段收发共口径多波束相控阵天线。天线以双频堆叠微带单元的形式实现了收发共口径,并通过天线集成滤波器保证了收发通道的隔离度优于44 dB。在±60°范围内,64元接收阵增益优于17.4 dB,128元发射阵增益优于20.2 dB,具有良好的波束扫描性能。为获得收发多波束一片式集成,在收发(Transmitter/Receiver, T/R)组件中使用晶圆级三维系统集成封装(Three Dimensions System in Package, 3D-SIP)并结合微凸点的制备技术,保证了系统级芯片(System-on-Chip, SOC)的高密度二次集成。高低频混压技术同样被应用于阵面、收发网络、控制供电链路的多层板集成。所提多波束的相控阵天线新架构具有高密度集成TR组件、多波束一体化、高效散热等特点,在卫星通信和数据链等方面具有广阔的应用前景。
基金Supported by the National Natural Science Foundation of China(No. 49771062), by a grant forUniversity Key Teacher of China, an
文摘This paper presents a multi-antenna GPS based system developed for local continuous deformation monitoring. Due to a large number of points that needs to be monitored, the standard approaches of using permanent GPS receiver arrays will cause high cost. It eventually becomes the limiting factor for large-scale use of GPS in these application areas. Multi-antenna GPS system allows a number of GPS antennas to be linked to one GPS receiver by a specially designed electronic component, i. e. the so-called GPS multi-antenna switch (GMS), The receiver takes data sequentially from each of the antennas attached to the receiver. A distinctive advantage of the approach is that one GPS receiver can be used to monitor more than one point. The cost per monitored point (i. e. the expenses of hardware) is therefore significantly reduced.