Global learning professional competencies (GLPCs) are essential for college students to be able to address the impact of globalization in the 21st century. Organizations and society-at-large look to higher education t...Global learning professional competencies (GLPCs) are essential for college students to be able to address the impact of globalization in the 21st century. Organizations and society-at-large look to higher education to prepare college students with GLPCs. In addition, there is a body of literature that suggest personal tacit knowledge enhance GLPCs. However, researchers have done little from an empirical perspective to determine the relationship between the use of P-T K and enhancement of GLPCs, hence the purpose of this study. The statistical results revealed significant correlations, p st century knowledge society through use of P-T K.展开更多
The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factor...The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factors(elevation,slope and topographic wetness index),intrinsic soil factors(soil bulk density,sand content,silt content,and clay content)and combined environmental factors(including the first two principal components(PC1 and PC2)of the Vis-NIR soil spectra)along three sampling transects located at the upstream,midstream and downstream of Taiyuan Basin on the Chinese Loess Plateau.We separated the multivariate data series of STN and influencing factors at each transect into six intrinsic mode functions(IMFs)and one residue by multivariate empirical mode decomposition(MEMD).Meanwhile,we obtained the predicted equations of STN based on MEMD by stepwise multiple linear regression(SMLR).The results indicated that the dominant scales of explained variance in STN were at scale 995 m for transect 1,at scales 956 and 8852 m for transect 2,and at scales 972,5716 and 12,317 m for transect 3.Multi-scale correlation coefficients between STN and influencing factors were less significant in transect 3 than in transects 1 and 2.The goodness of fit root mean square error(RMSE),normalized root mean square error(NRMSE),and coefficient of determination(R2)indicated that the prediction of STN at the sampling scale by summing all of the predicted IMFs and residue was more accurate than that by SMLR directly.Therefore,the multi-scale method of MEMD has a good potential in characterizing the multi-scale spatial relationships between STN and influencing factors at the basin landscape scale.展开更多
中文电子病历实体关系抽取是构建医疗知识图谱,服务下游子任务的重要基础。目前,中文电子病例进行实体关系抽取仍存在因医疗文本关系复杂、实体密度大而造成医疗名词识别不准确的问题。针对这一问题,提出了基于对抗学习与多特征融合的...中文电子病历实体关系抽取是构建医疗知识图谱,服务下游子任务的重要基础。目前,中文电子病例进行实体关系抽取仍存在因医疗文本关系复杂、实体密度大而造成医疗名词识别不准确的问题。针对这一问题,提出了基于对抗学习与多特征融合的中文电子病历实体关系联合抽取模型AMFRel(adversarial learning and multi-feature fusion for relation triple extraction),提取电子病历的文本和词性特征,得到融合词性信息的编码向量;利用编码向量联合对抗训练产生的扰动生成对抗样本,抽取句子主语;利用信息融合模块丰富文本结构特征,并根据特定的关系信息抽取出相应的宾语,得到医疗文本的三元组。采用CHIP2020关系抽取数据集和糖尿病数据集进行实验验证,结果显示:AMFRel在CHIP2020关系抽取数据集上的Precision为63.922%,Recall为57.279%,F1值为60.418%;在糖尿病数据集上的Precision、Recall和F1值分别为83.914%,67.021%和74.522%,证明了该模型的三元组抽取性能优于其他基线模型。展开更多
对文本中诸如实体与关系、事件及其论元等要素及其特定关系的联合抽取是自然语言处理的一项关键任务.现有研究大多采用统一编码或参数共享的方式隐性处理任务间的交互,缺乏对任务之间特定关系的显式建模,从而限制模型充分利用任务间的...对文本中诸如实体与关系、事件及其论元等要素及其特定关系的联合抽取是自然语言处理的一项关键任务.现有研究大多采用统一编码或参数共享的方式隐性处理任务间的交互,缺乏对任务之间特定关系的显式建模,从而限制模型充分利用任务间的关联信息并影响任务间的有效协同.为此,提出了一种基于任务协作表示增强的要素及关系联合抽取模型(Task-Collaboration Representation Enhanced model for joint extraction of elements and relationships,TCRE).该模型旨在从多个阶段处理任务间的特定关系,帮助子任务进行更细致的调节和优化,促进整体性能的提升.在三个关系抽取和一个事件抽取数据集上进行实验,TCRE在实体识别和关系提取任务上平均性能分别提高0.57%和0.77%,在触发词识别和论元角色分类任务上分别提高0.7%和1.4%.此外,TCRE还显示出在缓解“跷跷板现象”方面的作用.展开更多
行人重识别是计算机视觉领域中的一个重要研究方向,其目的是在不同的监控摄像头中识别并跟踪同一行人.由于视频帧间存在多种时间关系,从这些关系中可以获取到对象的运动模式以及细粒度特征,因此视频重识别相比图像重识别拥有更丰富的时...行人重识别是计算机视觉领域中的一个重要研究方向,其目的是在不同的监控摄像头中识别并跟踪同一行人.由于视频帧间存在多种时间关系,从这些关系中可以获取到对象的运动模式以及细粒度特征,因此视频重识别相比图像重识别拥有更丰富的时空线索,也更接近实际应用.问题的关键是如何挖掘这些时空线索作为视频重识别的特征.本文针对视频行人重识别问题,提出了一种基于Transformer的长短期时间关系网络(Long and Short Time Transformer,LSTT).该网络包含长短期时间关系模块,提取重要时序信息并强化特征表示.长期时间关系模块利用记忆线索存储每帧信息,并在每一帧建立全局联系;短期时间关系模块则考虑相邻帧之间交互,学习细粒度目标信息,提高特征表示能力.此外,为了提高模型对不同目标特征的适配性,本文还设计了一个包含不同规格卷积核的多尺度模块.该模块具有多种卷积感受野,能够更全面覆盖目标区域,从而进一步提高模型的泛化性能.在MARS、MARS_DL和iLIDS-VID 3个数据集上的实验结果表明,LSTT模型性能最优.展开更多
文摘Global learning professional competencies (GLPCs) are essential for college students to be able to address the impact of globalization in the 21st century. Organizations and society-at-large look to higher education to prepare college students with GLPCs. In addition, there is a body of literature that suggest personal tacit knowledge enhance GLPCs. However, researchers have done little from an empirical perspective to determine the relationship between the use of P-T K and enhancement of GLPCs, hence the purpose of this study. The statistical results revealed significant correlations, p st century knowledge society through use of P-T K.
基金financially supported by the Research Project of Shanxi Scholarship Council of China (2017– 075)the Natural Science foundation for Young Scientists of Shanxi Province (201801D221103)the Innovation Grant of Shanxi Agricultural University (2017ZZ07)
文摘The relationships between soil total nitrogen(STN)and influencing factors are scale-dependent.The objective of this study was to identify the multi-scale spatial relationships of STN with selected environmental factors(elevation,slope and topographic wetness index),intrinsic soil factors(soil bulk density,sand content,silt content,and clay content)and combined environmental factors(including the first two principal components(PC1 and PC2)of the Vis-NIR soil spectra)along three sampling transects located at the upstream,midstream and downstream of Taiyuan Basin on the Chinese Loess Plateau.We separated the multivariate data series of STN and influencing factors at each transect into six intrinsic mode functions(IMFs)and one residue by multivariate empirical mode decomposition(MEMD).Meanwhile,we obtained the predicted equations of STN based on MEMD by stepwise multiple linear regression(SMLR).The results indicated that the dominant scales of explained variance in STN were at scale 995 m for transect 1,at scales 956 and 8852 m for transect 2,and at scales 972,5716 and 12,317 m for transect 3.Multi-scale correlation coefficients between STN and influencing factors were less significant in transect 3 than in transects 1 and 2.The goodness of fit root mean square error(RMSE),normalized root mean square error(NRMSE),and coefficient of determination(R2)indicated that the prediction of STN at the sampling scale by summing all of the predicted IMFs and residue was more accurate than that by SMLR directly.Therefore,the multi-scale method of MEMD has a good potential in characterizing the multi-scale spatial relationships between STN and influencing factors at the basin landscape scale.
文摘中文电子病历实体关系抽取是构建医疗知识图谱,服务下游子任务的重要基础。目前,中文电子病例进行实体关系抽取仍存在因医疗文本关系复杂、实体密度大而造成医疗名词识别不准确的问题。针对这一问题,提出了基于对抗学习与多特征融合的中文电子病历实体关系联合抽取模型AMFRel(adversarial learning and multi-feature fusion for relation triple extraction),提取电子病历的文本和词性特征,得到融合词性信息的编码向量;利用编码向量联合对抗训练产生的扰动生成对抗样本,抽取句子主语;利用信息融合模块丰富文本结构特征,并根据特定的关系信息抽取出相应的宾语,得到医疗文本的三元组。采用CHIP2020关系抽取数据集和糖尿病数据集进行实验验证,结果显示:AMFRel在CHIP2020关系抽取数据集上的Precision为63.922%,Recall为57.279%,F1值为60.418%;在糖尿病数据集上的Precision、Recall和F1值分别为83.914%,67.021%和74.522%,证明了该模型的三元组抽取性能优于其他基线模型。
文摘对文本中诸如实体与关系、事件及其论元等要素及其特定关系的联合抽取是自然语言处理的一项关键任务.现有研究大多采用统一编码或参数共享的方式隐性处理任务间的交互,缺乏对任务之间特定关系的显式建模,从而限制模型充分利用任务间的关联信息并影响任务间的有效协同.为此,提出了一种基于任务协作表示增强的要素及关系联合抽取模型(Task-Collaboration Representation Enhanced model for joint extraction of elements and relationships,TCRE).该模型旨在从多个阶段处理任务间的特定关系,帮助子任务进行更细致的调节和优化,促进整体性能的提升.在三个关系抽取和一个事件抽取数据集上进行实验,TCRE在实体识别和关系提取任务上平均性能分别提高0.57%和0.77%,在触发词识别和论元角色分类任务上分别提高0.7%和1.4%.此外,TCRE还显示出在缓解“跷跷板现象”方面的作用.
文摘行人重识别是计算机视觉领域中的一个重要研究方向,其目的是在不同的监控摄像头中识别并跟踪同一行人.由于视频帧间存在多种时间关系,从这些关系中可以获取到对象的运动模式以及细粒度特征,因此视频重识别相比图像重识别拥有更丰富的时空线索,也更接近实际应用.问题的关键是如何挖掘这些时空线索作为视频重识别的特征.本文针对视频行人重识别问题,提出了一种基于Transformer的长短期时间关系网络(Long and Short Time Transformer,LSTT).该网络包含长短期时间关系模块,提取重要时序信息并强化特征表示.长期时间关系模块利用记忆线索存储每帧信息,并在每一帧建立全局联系;短期时间关系模块则考虑相邻帧之间交互,学习细粒度目标信息,提高特征表示能力.此外,为了提高模型对不同目标特征的适配性,本文还设计了一个包含不同规格卷积核的多尺度模块.该模块具有多种卷积感受野,能够更全面覆盖目标区域,从而进一步提高模型的泛化性能.在MARS、MARS_DL和iLIDS-VID 3个数据集上的实验结果表明,LSTT模型性能最优.