This paper mainly studies the influence of the relative position of target-sensors on the tracking accuracy of long range airplane. From theory analysis and simulation results, it is found that the tracking accuracy o...This paper mainly studies the influence of the relative position of target-sensors on the tracking accuracy of long range airplane. From theory analysis and simulation results, it is found that the tracking accuracy of long-range airplane can be improved greatly if the extant sensors are rationally placed and multi-sensor data fusion technique is used in the case of展开更多
An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitt...An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.展开更多
A novel infrared and radar synergistic tracking algorithm, which is based on the idea of closed loop control, and target’s motion model identification and particle filter approach, was put forward. In order to improv...A novel infrared and radar synergistic tracking algorithm, which is based on the idea of closed loop control, and target’s motion model identification and particle filter approach, was put forward. In order to improve the observability and filtering divergence of infrared search and tracking, the unscented Kalman filter algorithm that has stronger ability of non-linear approximation was adopted. The polynomial and least square method based on radar and IRST measurements to identify the parameters of the model was proposed, and a “pseudo sensor” was suggested to estimate the target position according to the identified model even if the radar is turned off. At last, the average Kullback-Leibler discrimination distance based on particle filter was used to measure the tracking performance, based on tracking performance and fuzzy stochastic decision, the idea of closed loop was used to retrieve the module parameter of “pseudo sensor”. The experimental result indicates that the algorithm can not only limit the radar activity effectively but also keep the tracking accuracy of active/passive system well.展开更多
We advance here a novel methodology for robust intelligent biometric information management with inferences and predictions made using randomness and complexity concepts. Intelligence refers to learning, adap- tation,...We advance here a novel methodology for robust intelligent biometric information management with inferences and predictions made using randomness and complexity concepts. Intelligence refers to learning, adap- tation, and functionality, and robustness refers to the ability to handle incomplete and/or corrupt adversarial information, on one side, and image and or device variability, on the other side. The proposed methodology is model-free and non-parametric. It draws support from discriminative methods using likelihood ratios to link at the conceptual level biometrics and forensics. It further links, at the modeling and implementation level, the Bayesian framework, statistical learning theory (SLT) using transduction and semi-supervised lea- rning, and Information Theory (IY) using mutual information. The key concepts supporting the proposed methodology are a) local estimation to facilitate learning and prediction using both labeled and unlabeled data;b) similarity metrics using regularity of patterns, randomness deficiency, and Kolmogorov complexity (similar to MDL) using strangeness/typicality and ranking p-values;and c) the Cover – Hart theorem on the asymptotical performance of k-nearest neighbors approaching the optimal Bayes error. Several topics on biometric inference and prediction related to 1) multi-level and multi-layer data fusion including quality and multi-modal biometrics;2) score normalization and revision theory;3) face selection and tracking;and 4) identity management, are described here using an integrated approach that includes transduction and boosting for ranking and sequential fusion/aggregation, respectively, on one side, and active learning and change/ outlier/intrusion detection realized using information gain and martingale, respectively, on the other side. The methodology proposed can be mapped to additional types of information beyond biometrics.展开更多
针对辐射限制下的目标跟踪问题,提出了一种机载雷达、红外传感器(infrared search and track,IRST)、电子支援措施(electronic support measure,ESM)协同跟踪与管理的方法。针对雷达、红外、ESM量测时间不一致的特点,采用顺序处理结构...针对辐射限制下的目标跟踪问题,提出了一种机载雷达、红外传感器(infrared search and track,IRST)、电子支援措施(electronic support measure,ESM)协同跟踪与管理的方法。针对雷达、红外、ESM量测时间不一致的特点,采用顺序处理结构的多传感器集中式融合方式对目标进行跟踪,利用跟踪过程中的预测协方差与预定门限进行比较控制雷达辐射,并分析了红外、ESM不同间歇时间、不同控制门限与雷达辐射时间的相对关系。研究结论有助于提高作战飞机的抗侦察和抗干扰能力,从而提升整体的生存能力。展开更多
文摘This paper mainly studies the influence of the relative position of target-sensors on the tracking accuracy of long range airplane. From theory analysis and simulation results, it is found that the tracking accuracy of long-range airplane can be improved greatly if the extant sensors are rationally placed and multi-sensor data fusion technique is used in the case of
基金ScientificResearchFoundationfortheReturnedOverseaChineseScholars State EducationMinistry
文摘An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.
基金Natural Science Foundation of Hebei Province(No. F2006000343)Hebei Ph.D DisciplineFoundation(No.B2004510)
文摘A novel infrared and radar synergistic tracking algorithm, which is based on the idea of closed loop control, and target’s motion model identification and particle filter approach, was put forward. In order to improve the observability and filtering divergence of infrared search and tracking, the unscented Kalman filter algorithm that has stronger ability of non-linear approximation was adopted. The polynomial and least square method based on radar and IRST measurements to identify the parameters of the model was proposed, and a “pseudo sensor” was suggested to estimate the target position according to the identified model even if the radar is turned off. At last, the average Kullback-Leibler discrimination distance based on particle filter was used to measure the tracking performance, based on tracking performance and fuzzy stochastic decision, the idea of closed loop was used to retrieve the module parameter of “pseudo sensor”. The experimental result indicates that the algorithm can not only limit the radar activity effectively but also keep the tracking accuracy of active/passive system well.
文摘We advance here a novel methodology for robust intelligent biometric information management with inferences and predictions made using randomness and complexity concepts. Intelligence refers to learning, adap- tation, and functionality, and robustness refers to the ability to handle incomplete and/or corrupt adversarial information, on one side, and image and or device variability, on the other side. The proposed methodology is model-free and non-parametric. It draws support from discriminative methods using likelihood ratios to link at the conceptual level biometrics and forensics. It further links, at the modeling and implementation level, the Bayesian framework, statistical learning theory (SLT) using transduction and semi-supervised lea- rning, and Information Theory (IY) using mutual information. The key concepts supporting the proposed methodology are a) local estimation to facilitate learning and prediction using both labeled and unlabeled data;b) similarity metrics using regularity of patterns, randomness deficiency, and Kolmogorov complexity (similar to MDL) using strangeness/typicality and ranking p-values;and c) the Cover – Hart theorem on the asymptotical performance of k-nearest neighbors approaching the optimal Bayes error. Several topics on biometric inference and prediction related to 1) multi-level and multi-layer data fusion including quality and multi-modal biometrics;2) score normalization and revision theory;3) face selection and tracking;and 4) identity management, are described here using an integrated approach that includes transduction and boosting for ranking and sequential fusion/aggregation, respectively, on one side, and active learning and change/ outlier/intrusion detection realized using information gain and martingale, respectively, on the other side. The methodology proposed can be mapped to additional types of information beyond biometrics.
文摘针对辐射限制下的目标跟踪问题,提出了一种机载雷达、红外传感器(infrared search and track,IRST)、电子支援措施(electronic support measure,ESM)协同跟踪与管理的方法。针对雷达、红外、ESM量测时间不一致的特点,采用顺序处理结构的多传感器集中式融合方式对目标进行跟踪,利用跟踪过程中的预测协方差与预定门限进行比较控制雷达辐射,并分析了红外、ESM不同间歇时间、不同控制门限与雷达辐射时间的相对关系。研究结论有助于提高作战飞机的抗侦察和抗干扰能力,从而提升整体的生存能力。